β-Mannosides are ubiquitous in nature, with diverse roles in many biological processes. Notably, Manβ1,4GlcNAc a constituent of the core -glycan in eukaryotes was recently identified as an immune activator, highlighting its potential for use in immunotherapy. Despite their biological significance, the synthesis of β-mannosidic linkages remains one of the major challenges in glycoscience. Here we present a chemoenzymatic strategy that affords a series of novel unnatural Manβ1,4GlcNAc analogues using the β-1,4-d-mannosyl--acetyl-d-glucosamine phosphorylase, BT1033. We show that the presence of fluorine in the GlcNAc acceptor facilitates the formation of longer β-mannan-like glycans. We also pioneer a "reverse thiophosphorylase" enzymatic activity, favouring the synthesis of longer glycans by catalysing the formation of a phosphorolysis-stable thioglycoside linkage, an approach that may be generally applicable to other phosphorylases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619541 | PMC |
http://dx.doi.org/10.1039/d3sc04169g | DOI Listing |
J Am Chem Soc
January 2025
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
Despite tremendous progress of dienamine catalysis along with its application in enantioselective synthesis over nearly two decades, certain limitations, especially with respect to the regioselectivity in the dienamine generation step, continue to persist. To overcome these shortcomings of classical dienamine catalysis, we now introduce the concept of alkoxy-directed dienamine catalysis and apply it to the enantioselective arene construction by desymmetrizing -enediones through [4 + 2]-cycloaddition. Catalyzed by a diphenylprolinol silyl ether, this reaction utilizes γ-alkoxy α,β-unsaturated aldehydes as the substrate and proceeds in a highly regioselective fashion through the intermediacy of δ-alkoxy dienamine.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
There has been a long search for a simple preparation of new cyclic analogues of ionophore antibiotics. We report a simple and general synthesis of three new cyclic derivatives of polyether ionophore, monensin A (MON). The application of the Huisgen 1,3-dipolar cycloaddition of azides and terminal alkynes to macrocyclization results in a concise, synthetic route to monensin lacton or lactam in only 4 steps.
View Article and Find Full Text PDFTeach Learn Med
January 2025
Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA.
There is a crucial need to more deeply understand the impact and etiology of bias toward persons with developmental disabilities (PWDD). A largely unstudied area of concern and possible intervention is the portrayal of PWDD in medical education. Often, medical photographs portray PWDD with obscured faces, emotionless, and posed in an undignified way.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States.
Macrocyclization or stapling is an important strategy for increasing the conformational stability and target-binding affinity of peptides and proteins, especially in therapeutic contexts. Atomistic simulations of such stapled peptides and proteins could help rationalize existing experimental data and provide predictive tools for the design of new stapled peptides and proteins. Standard approaches exist for incorporating nonstandard amino acids and functional groups into the force fields required for MD simulations and have been used in the context of stapling for more than a decade.
View Article and Find Full Text PDFJ Vis
January 2025
Neuroscience Program, University of Western Ontario, London, Ontario, Canada.
Human performance in perceptual and visuomotor tasks is enhanced when stimulus motion follows the laws of gravitational physics, including acceleration consistent with Earth's gravity, g. Here we used a manual interception task in virtual reality to investigate the effects of trajectory shape and orientation on interception timing and accuracy. Participants punched to intercept a ball moving along one of four trajectories that varied in shape (parabola or tent) and orientation (upright or inverted).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!