This study investigates the independent motion control of a two-degree-of-freedom (Two-DOF) intelligent underwater manipulator. The dynamics model of two-DOF manipulators in an underwater environment is proposed by combining Lagrange's equation and Morison's empirical formulation. Disturbing factors such as water resistance moments, additional mass force moments and buoyancy forces on the intelligent underwater manipulator are calculated exactly. The influence of these factors on the trajectory tracking of the intelligent underwater manipulator is studied through simulation analysis. Based on the design of the sliding mode surface of the PID structure, a new Fuzzy-logic Sliding Mode Control (FSMC) algorithm is presented for the control error and control input chattering defects of traditional sliding mode control algorithm. The experimental simulation results show that the FSMC algorithm proposed in this study has a good effect in the elimination of tracking error and convergence speed, and has a great improvement in control accuracy and input stability.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2023727DOI Listing

Publication Analysis

Top Keywords

sliding mode
16
intelligent underwater
16
mode control
12
underwater manipulator
12
two-dof intelligent
8
fsmc algorithm
8
control
7
underwater
5
robust fuzzy
4
fuzzy logic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!