AI Article Synopsis

  • The study investigated how neuromuscular electrical stimulation (NMES) affects countermovement jump (CMJ) height and kinematics in male students.
  • The experiment involved 15 participants who completed a CMJ performance test, followed by another test after a 30-minute NMES intervention.
  • Results showed that NMES led to enhanced neuromuscular activation, improving CMJ height and influencing the dynamic movement of the hip, thigh, shank, and feet.

Article Abstract

The purpose of this study was to examine the effect of neuromuscular electrical stimulation (NMES) immediate intervention training on the countermovement jump (CMJ) height and to explore kinematic differences in the CMJ at each instant. A total of 15 male students who had never received electrical stimulation were randomly selected as the research participants. In the first test, the CMJ performance was completed with an all-out effort. The second experiment was best performed immediately to complete the CMJ operation after NMES for 30 min. Both experiments used a high-speed camera optical capture system to collect kinematic data. The results of this experiment revealed that after im-mediate NMES training, neuromuscular activation causes post-activation potentiation, which increases the height of the center of gravity of the CMJ and affects the angular velocity of the hip joint, the velocity and acceleration of the thigh and the shank and the velocity of the soles of the feet. The use of NMES interventional training based on the improvement of technical movements and physical exercises is recommended in the future.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2023715DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
12
countermovement jump
8
neuromuscular electrical
8
cmj
5
kinematic analysis
4
analysis countermovement
4
jump performance
4
performance response
4
response neuromuscular
4
stimulation purpose
4

Similar Publications

Deep Brain Stimulation is a form of neurostimulation where electrical stimulation is delivered via intracranial electrodes over specific subcortical targets. It has been increasingly used as an alternative to ablative procedures for psychiatric disorders refractory to standard treatments. This review describes the common psychiatric indications for DBS, the current evidence base, putative mechanisms, and future directions.

View Article and Find Full Text PDF

Purpose: The aim of this study was to measure the effects of frequency spacing (i.e., F2 minus F1) on spectral integration for vowel perception in simulated bilateral electric-acoustic stimulation (BiEAS), electric-acoustic stimulation (EAS), and bimodal hearing.

View Article and Find Full Text PDF

Background: Postoperative cognitive dysfunction (POCD) is associated with an increased risk of dementia and may lead to chronic neurodegeneration. The utilization of intraoperative Transcutaneous Electrical Acupoint Stimulation (TEAS) in conjunction with anesthesia is expected to become an effective preventive measure for POCD in clinical practice.

Methods: We conducted a comprehensive literature review focusing on the use of TEAS in the prevention of POCD during surgical anesthesia.

View Article and Find Full Text PDF

Electric field stimulation directs target-specific axon regeneration and partial restoration of vision after optic nerve crush injury.

PLoS One

January 2025

Department of Ophthalmology, Keck School of Medicine, USC Roski Eye Institute, University of Southern California, Los Angeles, California, United States of America.

Failure of central nervous system (CNS) axons to regenerate after injury results in permanent disability. Several molecular neuro-protective and neuro-regenerative strategies have been proposed as potential treatments but do not provide the directional cues needed to direct target-specific axon regeneration. Here, we demonstrate that applying an external guidance cue in the form of electric field stimulation to adult rats after optic nerve crush injury was effective at directing long-distance, target-specific retinal ganglion cell (RGC) axon regeneration to native targets in the diencephalon.

View Article and Find Full Text PDF

Background: Subarachnoid hemorrhage (SAH) is characterized by intense central inflammation, leading to substantial post-hemorrhagic complications such as vasospasm and delayed cerebral ischemia. Given the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation (taVNS) and its ability to promote brain plasticity, taVNS has emerged as a promising therapeutic option for SAH patients. However, the effects of taVNS on cardiovascular dynamics in critically ill patients, like those with SAH, have not yet been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!