Background: Kangaroo rats are small mammals that are among the most abundant vertebrates in many terrestrial ecosystems in Western North America and are considered both keystone species and ecosystem engineers, providing numerous linkages between other species as both consumers and resources. However, there are challenges to studying the behavior and activity of these species due to the difficulty of observing large numbers of individuals that are small, secretive, and nocturnal. Our goal was to develop an integrated approach of miniaturized animal-borne accelerometry and radiotelemetry to classify the cryptic behavior and activity cycles of kangaroo rats and test hypotheses of how their behavior is influenced by light cycles, moonlight, and weather.
Methods: We provide a proof-of-concept approach to effectively quantify behavioral patterns of small bodied (< 50 g), nocturnal, and terrestrial free-ranging mammals using large acceleration datasets by combining low-mass, miniaturized animal-borne accelerometers with radiotelemetry and advanced machine learning techniques. We developed a method of attachment and retrieval for deploying accelerometers, a non-disruptive method of gathering observational validation datasets for acceleration data on free-ranging nocturnal small mammals, and used these techniques on Merriam's kangaroo rats to analyze how behavioral patterns relate to abiotic factors.
Results: We found that Merriam's kangaroo rats are only active during the nighttime phases of the diel cycle and are particularly active during later light phases of the night (i.e., late night, morning twilight, and dawn). We found no reduction in activity or foraging associated with moonlight, indicating that kangaroo rats are actually more lunarphilic than lunarphobic. We also found that kangaroo rats increased foraging effort on more humid nights, most likely as a mechanism to avoid cutaneous water loss.
Conclusions: Small mammals are often integral to ecosystem functionality, as many of these species are highly abundant ecosystem engineers driving linkages in energy flow and nutrient transfer across trophic levels. Our work represents the first continuous detailed quantitative description of fine-scale behavioral activity budgets in kangaroo rats, and lays out a general framework for how to use miniaturized biologging devices on small and nocturnal mammals to examine behavioral responses to environmental factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10621205 | PMC |
http://dx.doi.org/10.1186/s40462-023-00433-x | DOI Listing |
Mol Phylogenet Evol
January 2025
HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary.
Here we provide a comprehensive update on the diversity and genetic relatedness of adenoviruses occurring in rodents. Extensive PCR screenings revealed the presence of adenoviral DNA in samples originating from representatives of 17 rodent species from four different suborders of Rodentia. Distinct sequences of 28 different adenoviruses were obtained from the positive samples.
View Article and Find Full Text PDFPathogens
December 2024
Departamento de Ciencias Veterinarias, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente y Estocolmo s/n Colonia Progresista AP 1729-D Cd. Juárez, Chihuahua CP 32310, Mexico.
Rodents play a significant role in the transmission of zoonotic diseases; anthropization has increased human contact with these animals, vectors of infectious agents. However, the processes driving parasitism of hosts remains poorly understood. , spp.
View Article and Find Full Text PDFPredation is a fundamental selective pressure on animal morphology, as morphology is directly linked with physical performance and evasion. Bipedal heteromyid rodents, which are characterized by unique morphological traits such as enlarged hindlimbs, appear to be more successful than sympatric quadrupedal rodents at escaping predators such as snakes and owls, but no studies have directly compared the escape performance of bipedal and quadrupedal rodents. We used simulated predator attacks to compare the evasive jumping ability of bipedal kangaroo rats () to that of three quadrupedal rodent groups-pocket mice (), woodrats (), and ground squirrels ().
View Article and Find Full Text PDFJ Agric Food Chem
July 2024
Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising 85354, Germany.
Geosmin, a ubiquitous volatile sesquiterpenoid of microbiological origin, is causative for deteriorating the quality of many foods, beverages, and drinking water, by eliciting an undesirable "earthy/musty" off-flavor. Moreover, and across species from worm to human, geosmin is a volatile, chemosensory trigger of both avoidance and attraction behaviors, suggesting its role as semiochemical. Volatiles typically are detected by chemosensory receptors of the nose, which have evolved to best detect ecologically relevant food-related odorants and semiochemicals.
View Article and Find Full Text PDFIntegr Comp Biol
September 2024
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK), Hong Kong.
Tails play essential roles in functions related to locomotor stability and maneuverability among terrestrial and arboreal animals. In kangaroo rats, bipedal hopping rodents, tails are used as effective inertial appendages for stability in hopping, but also facilitate stability and maneuverability during predator escape leaps. The complexity of tail functionality shows great potential for bio-inspiration and robotic device design, as maneuvering is accomplished by a long and light-weight inertial appendage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!