In addition to its motor functions, the cerebellum is involved in emotional regulation, anxiety and affect. We found that suppressing the firing of cerebellar Purkinje cells (PCs) rapidly excites forebrain areas that contribute to such functions (including the amygdala, basal forebrain and septum), but that the classic cerebellar outputs, the deep cerebellar nuclei, do not directly project there. We show that PCs directly inhibit parabrachial nuclei (PBN) neurons that project to numerous forebrain regions. Suppressing the PC-PBN pathway influences many regions in the forebrain and is aversive. Molecular profiling shows that PCs directly inhibit numerous types of PBN neurons that control diverse behaviors that are not involved in motor control. Therefore, the PC-PBN pathway allows the cerebellum to directly regulate activity in the forebrain, and may be an important substrate for cerebellar disorders arising from damage to the posterior vermis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348979PMC
http://dx.doi.org/10.1038/s41593-023-01462-wDOI Listing

Publication Analysis

Top Keywords

pcs directly
8
directly inhibit
8
pbn neurons
8
pc-pbn pathway
8
forebrain
6
cerebellar
5
purkinje cell
4
cell parabrachial
4
parabrachial nucleus
4
nucleus pathway
4

Similar Publications

Background: Recent studies provide strong evidence for a key role of skeletal muscle pathophysiology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). In a 2021 review article on the pathophysiology of ME/CFS, we postulated that hypoperfusion and ischemia can result in excessive sodium and calcium overload in skeletal muscles of ME/CFS patients to cause mitochondrial damage. Since then, experimental evidence has been provided that supports this concept.

View Article and Find Full Text PDF

Transcranial direct current stimulation (tDCS) generates a weak electric field (EF) within the brain, which induces opposite polarization in the soma and distal dendrite of cortical pyramidal neurons. The somatic polarization directly affects the spike timing, and dendritic polarization modulates the synaptically evoked dendritic activities. Ca spike, the most dramatic dendritic activity, is crucial for synaptic integration and top-down signal transmission, thereby indirectly influencing the output spikes of pyramidal cells.

View Article and Find Full Text PDF

Solar fuel production involving the conversion of solar energy directly into chemical fuels such as hydrogen and valuable chemicals using photoelectrochemical (PEC) cells and photocatalysts (PCs) offers a promising avenue for sustainable energy while reducing carbon emissions. However, existing PEC cells and PCs fall short of economic viability due to their low solar-to-chemical (STC) conversion efficiency associated with the employed semiconductors, highlighting the clear need for identifying ideal semiconductor materials. Organic semiconductors (OSs), π-conjugated carbon-based materials, have emerged as promising candidates for enhancing STC conversion efficiency due to their remarkable optoelectrical properties, which can be readily adjustable through molecular engineering.

View Article and Find Full Text PDF

Transcranial alternating current stimulation (ctACS) has the potential to be an appealing, non-invasive treatment option for psychiatric and neurological disorders. However, its potential has been limited by significant knowledge gaps in the details and mechanisms of how ctACS affects cerebellar output on single cell and population levels. We investigated this issue by making single-unit recordings of Purkinje cells (PC) and lateral cerebellar nuclear (Lat CN) cells in response to ctACS in anesthetized adult female Sprague-Dawley rats.

View Article and Find Full Text PDF
Article Synopsis
  • Purkinje cells (PCs) mainly connect to cerebellar nuclei but also have direct links to the brainstem, which haven't been fully explored until now.
  • Using a PC-specific genetic tool, researchers found that PC synapses are widespread in the brainstem, particularly around vestibular and parabrachial nuclei, but the density varies by region.
  • Despite previous beliefs, PCs show minimal synaptic connections to some brainstem neurons, suggesting they selectively influence certain areas and specific behaviors rather than innervating all neuron types uniformly.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!