Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) holds a pivotal role within the glycolytic pathway of higher plants. It has garnered attention as a significant target protein in instances of oxidative stress, where it can engage in thiolation reactions within its active site. Numerous genes encoding cytosolic iterations of GAPDH have been identified and analyzed in specific plant species. This investigation was conducted to gain insights into GAPDH's function amidst drought-induced stress. Within this framework, the basil plant (Ocimum basilicum) was chosen for focused exploration, encompassing the cloning of the comprehensive cDNA of basil GAPDH (ObGAPDH) and scrutinizing its patterns of expression. The complete sequence of Ob-GAPDH spanned 1315 base pairs. The resultant protein derived from this sequence comprised 399 amino acids, projecting a molecular weight of approximately 42.54 kDa and an isoelectric point (pI) of 6.01. An examination of the evolutionary connections among various GAPDH proteins unveiled ObGAPDH's shared lineage with GAPDH proteins sourced from other plants, such as Salvia splendens and Sesamum indicum. Furthermore, computational methodologies were harnessed to predict the potential oxidative role of ObGAPDH in response to external signals. Molecular docking simulations illuminated the interaction between ObGAPDH and hydrogen peroxide (HO) as a ligand. Scrutinizing the expression patterns of the ObGAPDH gene under conditions of water scarcity stress brought to light diverse levels of transcriptional activity. Collectively, these findings underscore the notion that the regulation of ObGAPDH expression is contingent upon both the specific plant cultivar and the presence of stress stemming from drought conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-30549-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!