Metakaolin (MK) is one of the most sustainable cementitious construction materials, which is derived through a direct heating procedure known as calcination. Calcination process takes place substantially lower temperatures than that required for Portland cement, making it a more environmentally sustainable alternative to traditional cement. This procedure causes the removal of hydroxyl water from the naturally occurring kaolin clay (AlSiO(OH) with MK (AlO·2SiO) as its product. Kaolin naturally exists in large amount within 5°29'N-5°35'N and 7°21'E-7°3'E geographical coordinates surrounding Umuoke, Obowo, Nigeria. Alumina and silica are the predominant compounds in MK, which provide it with the pozzolanic ability, known as the 3-chemical pozzolanic potential (3CPP), with high potential as a cementitious material in concrete production and soil stabilization. Over the years, researchers have suggested the best temperature at which MK is derived to have the highest pozzolanic ability. Prominent among these temperature suggestions were 800 °C (3CPP of 94.45%) and 750 °C (3CPP of 94.76%) for 2 h and 5 h' calcination periods, respectively. In this research paper, 11 different specimens of Kaolin clay obtained from Umuoke, Nigeria, were subjected to a calcination process at oven temperatures from 350 to 850 °C in an increment of 50 °C for 1 h each to derive 11 samples of MK. The MK samples and Kaolin were further subjected to X-ray fluorescence), scanning electron microscopy (SEM) and X-ray diffraction (XRD) Brunauer-Emmett-Teller (BET) tests to determine the microstructural behaviour and the pozzolanic properties via the 3CPP as to exploit the best MK with the highest cementing potential as a construction material. The results show that the MK heated at 550 °C and 800 °C produced the highest pozzolanic potentials of 96.26% and 96.28%, respectively. The enhancement in pozzolanic potential at optimum calcination temperature is attributed to an increase in the specific surface area upon calcination of kaolinite confirmed by BET results. The SEM and XRD results further supported the above result with the strengthened crystal structure of the MK at these preferred temperatures. Generally, 550 °C is more preferred due to the less heat energy needed for its formulation during 1 h of calcination, which outperforms the previous results, that suggested 750 °C and 800 °C in addition to longer hours of heat exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622424 | PMC |
http://dx.doi.org/10.1038/s41598-023-46362-y | DOI Listing |
Heliyon
January 2025
Faculty of Engineering, Autonomous University of Queretaro, Santiago de Queretaro, Qro, 76010, Mexico.
The search for alternative material sources to conventional ones has had a significant impact on the construction sector today, driven by the implementation of sustainable development policies on a global scale. Alternative cementitious materials, such as agricultural industry by-products, have been introduced to ensure the efficient use of renewable natural resources while promoting a balance between the technical and economic aspects of infrastructure projects. This article provides an overview of research conducted on the use of pozzolans derived from agro-industrial by-products, such as rice husk ash (RHA), palm oil fuel ash (POFA), and sugarcane bagasse ash (SCBA), which have a high content of amorphous silica.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
The formulation of binary, ternary, and quaternary supplementary cementitious materials (SCMs) on an optimized silica fume amount using fly ash, ultrafine (MQ), and limestone powders (LS) is the most sustainable approach to recycling these types of solid wastes for durable concrete. The optimum replacement level of 10% silica fume was blended with different replacement levels of 5, 8, 10, and 15% MQ to formulate different ternary mixes to evaluate the filling effect of MQ. Different ternary mixes containing 10% silica fume and 5, 10, and 15% LS were also produced to examine the effectiveness of both ternary mixtures with either MQ or LS.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Facultad de Ingeniería, CIFICEN (CONICET, CICBPA, UNCPBA), Olavarría B7400, Argentina.
Global industry relies on a linear approach for economic growth. One step towards transformation is the implementation of a circular economy and the reclamation of anthropogenic deposits. This study examines two filter dusts, one German and one Argentinian, from the production of calcined clays, representing such deposits.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Smart Construction and Environmental Engineering, Daejin University, 1007 Hoguk-ro, Pocheon-si 11159, Republic of Korea.
The global construction industry faces increasing pressure to adopt sustainable practices, particularly in reducing cement-related CO emissions. This study investigates the feasibility of using treated wastewater sludge (WWS) as a partial replacement for cement in repair mortars. Treated (A-WWS) and untreated (B-WWS) sludge were evaluated for their effects on workability, mechanical strength, durability, and environmental impact.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
Materials & Structural Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
This study developed three composite slurries for coating recycled aggregate by incorporating polyacrylate emulsion, fly ash, and gypsum into a cement-based mixture. The filling and pozzolanic effects of fly ash help to improve microcracks in the recycled aggregates. The polyacrylate emulsion forms a strong bonding layer between the cement matrix and the aggregates, enhancing the interfacial bond strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!