AI Article Synopsis

  • The oral cavity is the first part of the digestive system, aiding in food breakdown and interacting with various environmental factors, including microbiota.
  • Oral cancer involves abnormal cell behaviors caused by complex interactions between environmental influences and genetic predispositions, complicating treatment and understanding.
  • Oral potentially malignant disorders, like leukoplakia and submucous fibrosis, have high cancer risk and may be influenced by mechanical stressors, such as chewing betel quid, affecting tissue stiffness.

Article Abstract

The oral cavity serves as the initial segment of the digestive system and is responsible for both nutritional supplementation and the mechanical breakdown of food. It comprises distinct hard and soft tissues; the oral mucosa is subject to mechanical stress and interaction with microbiota. In oral cancer, tumors exhibit abnormal cellular networks and aberrant cell-cell interactions arising from complex interplays between environmental and genetic factors. This presents a challenge for clinicians and researchers, impeding the understanding of mechanisms driving oral cancer development and treatment strategies. Lesions with dysplastic features are categorized under oral potentially malignant disorders, including oral leukoplakia, erythroplakia, oral submucous fibrosis, and proliferative verrucous leukoplakia, carrying a high malignancy risk. In this review, we discuss oral cancer cell characteristics and the stiffness of the surrounding matrix. We also discuss the significance of stiffness equilibrium in oral potentially malignant disorders, particularly oral submucous fibrosis, possibly triggered by mechanical stress such as betel quid chewing.

Download full-text PDF

Source
http://dx.doi.org/10.31083/j.fbl2810265DOI Listing

Publication Analysis

Top Keywords

oral malignant
12
malignant disorders
12
oral cancer
12
oral
10
mechanical stress
8
oral submucous
8
submucous fibrosis
8
etiology oral
4
disorders squamous
4
squamous cell
4

Similar Publications

Background: Head and neck cancer (HNC) is amongst the 10 most common cancers worldwide and has a major effect on patients' quality of life. Given the complexity of this unique group of patients, a multidisciplinary team approach is preferable. Amongst the debilitating sequels of HNC and/or its treatment, swallowing, speech and voice impairments are prevalent and require the involvement of speech-language pathologists (SLPs).

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) constitutes 90% of liver cancer cases and ranks as the third leading cause of cancer-related mortality, necessitating urgent development of alternative therapies. Lactoferrin (LF), a natural iron-binding glycoprotein with reported anticancer effects, is investigated for its potential in liver cancer treatment, an area with limited existing studies. This study focuses on evaluating LF's anti-liver cancer effects on HCC cells and assessing the preventive efficacy of oral LF administration in a murine model.

View Article and Find Full Text PDF

Cytoplasmic proliferating cell nuclear antigen (PCNA) is highly expressed in acute myeloid leukemia (AML) cells, supporting oxidative metabolism and leukemia stem cell (LSC) growth. We report on AOH1996 (AOH), an oral compound targeting cancer-associated PCNA, which shows significant antileukemic activity. AOH inhibited growth in AML cell lines and primary CD34 + CD38 - blasts (LSC-enriched) in vitro while sparing normal hematopoietic stem cells (HSCs).

View Article and Find Full Text PDF

Introduction: Squamous cell carcinoma (SCC) is the most common malignancy of the head and neck region. Combination therapy potentially enhances the effectiveness beyond that of each treatment alone. This study aimed to assess whether photodynamic therapy (PDT), using methylene blue as a photosensitizer in conjunction with doxorubicin, produces synergistic effects on the apoptosis of the oral squamous cell carcinoma (OSCC) cell line.

View Article and Find Full Text PDF

Research progress of mitochondria and cytoskeleton crosstalk in tumour development.

Biochim Biophys Acta Rev Cancer

December 2024

Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang 110002, Liaoning Province, China. Electronic address:

During tumour progression, organelle function undergoes dramatic changes, and crosstalk among organelles plays a significant role. Crosstalk between mitochondria and other organelles such as the endoplasmic reticulum and cytoskeleton has focussed attention on the mechanisms of tumourigenesis. This review demonstrates an overview of the molecular structure of the mitochondrial-cytoskeletal junction and its biological interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!