A powerful metric for expressive language lateralization in MEG.

Neurosci Lett

Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, ON, Canada. Electronic address:

Published: January 2024

Magnetoencephalography (MEG) has proven valuable for presurgical language lateralization. Investigators have established that low-beta (13-23 Hz) event-related desynchrony (ERD), a neuromagnetic signature for increased neuronal firing, maps to critical language centers for expressive language tasks in MEG. The distribution of low-beta ERD is relatively bilateral in early childhood, transitioning to left lateralized by adolescence or early adulthood. Recently, we showed that a complementary signal, low-beta event-related synchrony, thought to reflect neuronal inhibition, becomes increasingly right lateralized across development. Here, we introduce a hybrid laterality index for language derived from both low-beta ERD and ERS. We present findings from a large cohort of children performing verb generation in MEG, and show that inclusion of low-beta ERS provides relatively powerful estimation of language lateralization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10842174PMC
http://dx.doi.org/10.1016/j.neulet.2023.137539DOI Listing

Publication Analysis

Top Keywords

language lateralization
12
expressive language
8
low-beta erd
8
language
6
low-beta
5
powerful metric
4
metric expressive
4
meg
4
lateralization meg
4
meg magnetoencephalography
4

Similar Publications

Objective: To examine neuropsychological characteristic differences between typical and atypical language dominance in adult persons with epilepsy (PWE) and mesial temporal sclerosis (MTS), including exploring the impact of selected clinical variables on detection of atypical language and neuropsychological performance.

Methods: Adults with intractable epilepsy and MTS ( = 39) underwent comprehensive, pre-surgical evaluation including fMRI and neuropsychological assessment. Participants with concordant lateralization of MTS and seizure onset were included.

View Article and Find Full Text PDF

Objectives: Most human brains exhibit left hemisphere asymmetry for planum temporale (PT) surface area and gray matter volume, which is interpreted as cerebral lateralization for language. Once considered a uniquely human feature, PT asymmetries have now been documented in chimpanzees and olive baboons. The goal of the current study was to further investigate the evolution of PT asymmetries in nonhuman primates.

View Article and Find Full Text PDF

Research on the cerebellum and its functional organization has significantly expanded over the last decades, expanding our comprehension of its role far beyond motor control, including critical contributions to cognition and affective processing. Notably, the cerebellar lateralization mirrors contralateral brain lateralization, a complex phenomenon that remains unexplored, especially across different stages of life. The present work aims to bridge this gap by providing a comprehensive scoping review of the lateralization of motor, cognitive, and affective functioning within the cerebellum across the lifespan.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) is a chronic, progressive disease that affects both upper and lower motor neurons. Some physicians have used traditional Chinese therapies (TCT) to treat ALS. However, there has been no systematic review or meta-analysis to evaluate the effectiveness and safety of TCT interventions.

View Article and Find Full Text PDF

When we listen to speech, our brain's neurophysiological responses "track" its acoustic features, but it is less well understood how these auditory responses are enhanced by linguistic content. Here, we recorded magnetoencephalography (MEG) responses while subjects of both sexes listened to four types of continuous-speech-like passages: speech-envelope modulated noise, English-like non-words, scrambled words, and a narrative passage. Temporal response function (TRF) analysis provides strong neural evidence for the emergent features of speech processing in cortex, from acoustics to higher-level linguistics, as incremental steps in neural speech processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!