AI Article Synopsis

  • Silver (AgNPs) and Silicon Dioxide (SiNPs) nanoparticles, but not Gold (AuNPs), negatively impact mitochondrial function by decreasing membrane potential and ATP production.
  • Sublethal exposure to AgNPs and SiNPs increases reactive oxygen species (ROS) levels and alters mitochondrial dynamics, as indicated by changes in specific protein expressions.
  • The study highlights that the type of nanoparticle material significantly influences cellular responses at the subcellular level, emphasizing the importance of understanding nanomaterial risks for biological safety.

Article Abstract

Nanomaterials have been extensively applied in multiple industries, among which silver nanoparticles (AgNPs), silicon dioxide nanoparticles (SiNPs), and gold nanoparticles (AuNPs) have become representative of widely consumed NPs. Limited knowledge is available regarding the subcellular responses of NPs with different physicochemical properties, i.e. material type and size, under the noncytotoxic concentrations. Macrophages are important sensitive cells exposed to NPs, and mitochondria are sensitive organelles that respond at the subcellular level. Herein, we found that sublethal concentrations of AgNPs and SiNPs, not AuNPs, decreased the mitochondrial membrane potential (MMP) and tubular mitochondria, and further resulted in an increase of ROS level and a decrease of ATP generation. AgNPs and SiNPs can also disturb mitochondrial dynamics manifested as increasing Mfn2 expression and decreasing Drp1 expression. Further assessments for mitochondrial function showed that AgNPs and SiNPs exposure led to a decrease in the gene expressions related to complex I (Ndufa8 and Ndufs2), complex III (Uqcrc2 and Uqcrfs1), complex IV (Cox6b1), and activity of complex I, suggesting their potential roles in impairing cellular respiration. In terms of the effects of NPs with different sizes, stronger toxicity was observed in smaller-sized nanoparticles. Among the above mitochondrial changes, we identified that ROS, ATP, MMP, tubular mitochondria, and expression of Drp1 were relatively sensitive indicators in subcellular response to NPs. With the above sensitive indicators, the comparison of heterogeneity between material type and size of the NPs showed that material type occupied a main influence on subcellular mitochondrial effects. Our finding provided important data on the potential subcellular risks of NPs, and indicated the vital role of material type for a better understanding of the nanomaterial biological safety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168211DOI Listing

Publication Analysis

Top Keywords

material type
16
agnps sinps
12
type size
8
mmp tubular
8
tubular mitochondria
8
sensitive indicators
8
nps
7
mitochondrial
6
nanoparticles
5
subcellular
5

Similar Publications

Background: The search for early and minimally invasive diagnostic approaches to pancreatic cancer (PC) remains an important issue. One of the most promising directions is to find a sensitive key in the metabolic changes during widespread causes of PC, i.e.

View Article and Find Full Text PDF

Background: Cervical cancer is considered one of the most common gynecological malignancies with an increased incidence in developing countries. Magnetic resonance imaging (MRI) plays a valuable role in staging cervical cancer and providing valuable information necessary for selecting the appropriate treatment plan, while closely correlating with the prognosis of the patient.

Objective: The aim of this study is to assess the diagnostic value of diffusion-weighted imaging (DWI) in the preoperative loco-regional staging of cervical carcinoma.

View Article and Find Full Text PDF

Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes.

J Dent Sci

December 2024

Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.

View Article and Find Full Text PDF

Microneedles as transdermal drug delivery system for enhancing skin disease treatment.

Acta Pharm Sin B

December 2024

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.

Microneedles (MNs) serve as a revolutionary paradigm in transdermal drug delivery, heralding a viable resolution to the formidable barriers presented by the cutaneous interface. This review examines MNs as an advanced approach to enhancing dermatological pathology management. It explores the complex dermis structure and highlights the limitations of traditional transdermal methods, emphasizing MNs' advantage in bypassing the stratum corneum to deliver drugs directly to the subdermal matrix.

View Article and Find Full Text PDF

Background: /purposeSince 1995, Taiwan's National Health Insurance (NHI) has offered a comprehensive dental coverage to over 99 % of the population. This study mainly analyzed the dental service utilization and expenditure trends by the gender, age, and service type and evaluated the resource allocation across different demographics from 2000 to 2020.

Materials And Methods: Nationwide NHI administrative data were used to assess the dental visit rates, average visits per user, and per capita expenditure by the gender, age, and 11 service categories for the years 2000, 2005, 2010, 2015, and 2020.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!