Balance of Gata3 and Ramp2 in hepatocytes regulates hepatic vascular reconstitution in postoperative liver regeneration.

J Hepatol

International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai Key Laboratory of Hepato-biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical University, Shanghai 200438, China; Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200433, China. Electronic address:

Published: February 2024

Background & Aims: Post-hepatectomy liver failure (PHLF) leads to poor prognosis in patients undergoing hepatectomy, with hepatic vascular reconstitution playing a critical role. However, the regulators of hepatic vascular reconstitution remain unclear. In this study, we aimed to investigate the regulatory mechanisms of hepatic vascular reconstitution and identify biomarkers predicting PHLF in patients undergoing hepatectomy.

Methods: Candidate genes that were associated with hepatic vascular reconstitution were screened using adeno-associated virus vectors in Alb-Cre-CRISPR/Cas9 mice subjected to partial hepatectomy. The biological activities of candidate genes were estimated using endothelial precursor transfusion and associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) models. The level of candidates was detected in biopsies from patients undergoing ALPPS. Risk factors for PHLF were also screened using retrospective data.

Results: Downregulation of Gata3 and upregulation of Ramp2 in hepatocytes promoted the proliferation of liver sinusoidal endothelial cells and hepatic revascularization. Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor A (VEGFA) played opposite roles in regulating the migration of endothelial precursors from bone marrow and the formation of new sinusoids after hepatectomy. Gata3 restricted endothelial cell function in patient-derived hepatic organoids, which was abrogated by a Gata3 inhibitor. Moreover, overexpression of Gata3 led to higher mortality in ALPPS mice, which was improved by a PEDF-neutralizing antibody. The expression of Gata3/RAMP and PEDF/VEGFA tended to have a negative correlation in patients undergoing ALPPS. A nomogram incorporating multiple factors, such as serum PEDF/VEGF index, was constructed and could efficiently predict the risk of PHLF.

Conclusions: The balance of Gata3 and Ramp2 in hepatocytes regulates the proliferation of liver sinusoidal endothelial cells and hepatic revascularization via changes in the expression of PEDF and VEGFA, revealing potential targets for the prevention and treatment of PHLF.

Impact And Implications: In this study, we show that the balance of Gata3 and Ramp2 in hepatocytes regulates hepatic vascular reconstitution by promoting a shift from pigment epithelium-derived factor (PEDF) to vascular endothelial growth factor A (VEGFA) expression during hepatectomy- or ALLPS (associating liver partition and portal vein ligation for staged hepatectomy)-induced liver regeneration. We also identified serum PEDF/VEGFA index as a potential predictor of post-hepatectomy liver failure in patients who underwent hepatectomy. This study improves our understanding of how hepatocytes contribute to liver regeneration and provides new targets for the prevention and treatment of post-hepatectomy liver failure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2023.10.016DOI Listing

Publication Analysis

Top Keywords

hepatic vascular
24
vascular reconstitution
24
ramp2 hepatocytes
16
patients undergoing
16
balance gata3
12
gata3 ramp2
12
hepatocytes regulates
12
liver regeneration
12
post-hepatectomy liver
12
liver failure
12

Similar Publications

Purpose: Obesity and type 2 diabetes (T2DM) are major risk factors for hepatic steatosis. Diet or bariatric surgery can reduce liver volume, fat content, and inflammation. However, little is known about their effects on liver function, as evaluated here using the LiMAx test.

View Article and Find Full Text PDF

The pleiotropic effects of PCSK9 in cardiovascular diseases beyond cholesterol metabolism.

Acta Physiol (Oxf)

February 2025

Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.

Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality globally, with elevated low-density lipoprotein cholesterol (LDL-C) levels being a major risk factor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in regulating LDL-C levels by promoting the degradation of hepatic low-density lipoprotein receptors (LDLR) responsible for clearing LDL-C from the circulation. PCSK9 inhibitors are novel lipid-modifying agents that have demonstrated remarkable efficacy in reducing plasma LDL-C levels and decreasing the incidence of CVD.

View Article and Find Full Text PDF

Giant hepatic hemangiomas are challenging to manage, requiring effective therapeutic approaches. Transarterial bleomycin-lipiodol embolization (TACE) has shown promise as a treatment option, yet predictive factors for its success are not well defined. This study aimed to assess the efficacy of TACE for giant hepatic hemangiomas and identify factors influencing treatment outcomes.

View Article and Find Full Text PDF

Carbon dioxide gas emboli is a potentially fatal complication that occurs more frequently during laparoscopic hepatectomy compared to other laparoscopic surgeries. The patient featured in this report had massive gas embolism confirmed by intraoperative transesophageal echocardiography (TEE) that were associated with episodes of severe hypoxemia, hemodynamic instability, and right ventricular failure requiring conversion to open hepatectomy. Abrupt abdominal decompression resulted in massive hemorrhage from a previously undetected defect in the middle hepatic vein.

View Article and Find Full Text PDF

Celiac trunk angiography with balloon occlusion of splenic artery for diagnosis and treatment of splenic steal syndrome.

Radiol Case Rep

March 2025

University of Maryland School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Division of Vascular and Interventional Radiology, Baltimore, MD, USA.

Splenic steal syndrome (SSS) post liver transplant is a potential cause of graft dysfunction in the setting of peripheral hepatic arterial bed resistance and redirection of blood flow to a dominant splenic artery resulting in reduction of hepatic arterial inflow. We report utilization of balloon occlusion of the proximal splenic artery as an objective measure to confirm the diagnosis of SSS in a patient with orthotopic liver transplant followed by successful treatment with proximal splenic artery embolization using Gelfoam and Amplatzer vascular plug. Written informed consent for the publication of this case report was obtained from the patient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!