Triple negative breast cancer (TNBC) cells resist chemotherapy by hijacking apoptosis. Alternative cell death forms like ferroptosis offer new treatment options. A combined therapy using neratinib (NTB; ferroptosis inducer) and silibinin (SLB; apoptosis inducer) via albumin-based nanocarriers (N-S Alb NPs) was explored to target TNBC. N-S Alb NPs had optimal size (134.26 ± 10.23 nm), PDI (0.224 ± 0.01), and % entrapment efficiency (∼80 % for NTB and ∼87 % for SLB). Transmission electron microscopy confirmed their spherical shape. In vitro release studies showed sustained drug release without hemolysis risk. N-S Alb NPs had higher cellular uptake and cytotoxicity than individual drugs or their mixture. IC values for N-S Alb NPs were significantly reduced in MDA-MB-231 (∼2.23-fold) and 4T1 (∼1.85-fold) cell lines and apoptosis index were significantly higher in MDA-MB-231 (∼1.31-fold) and 4T1 cell line (∼1.35-fold) than the physical mixture of both drugs (NTB + SLB). N-S Alb NPs generated more reactive oxygen species (ROS) and caused mitochondrial membrane depolarization, indicating increased cell death. They also exhibited better ferroptosis induction by reducing glutathione (GSH), increasing Fe activity and MDA levels in TNBC cells. Thus, N-S Alb NPs had the ability to promote "mixed" type cell death, showed promise in enhancing the payload capabilities and targeting in TNBC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.123570DOI Listing

Publication Analysis

Top Keywords

n-s alb
24
alb nps
24
cell death
12
triple negative
8
negative breast
8
breast cancer
8
tnbc cells
8
n-s
6
alb
6
nps
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!