The present study endeavors to establish a comprehensive kinetic analysis of Municipal Solid Waste residue pyrolysis. As the sample exhibits four distinct degradation stages, it has been carried out by adopting a multi-step process behavior. Different approaches have been compared, including five isoconversional methods (Kissinger-Akahira-Sunose, Ozawa-Flynn-Wall, Starink, Friedman and Advanced integral Vyazovkin), Mathematical Deconvolution Analysis, and Independent Parallel Reaction Model. The study focuses on the two active pyrolysis steps, the first one corresponds to the biomass components between 150 and 400 °C, with the decomposition peak between 300 and 350 °C, whereas the second corresponds to the plastic fraction with temperature ranging between 400 and 520 °C. The activation energy values obtained from the different kinetic methods for both steps are estimated at 240 and 250 kJ/mol, respectively. It was observed that the biomass components degradation obeys a third-order kinetic model, while the plastic fraction follows a first-order kinetic model. The analytical pyrolysis of the two main stages allows for the identification and semi-quantification of the compounds produced during municipal solid waste pyrolysis. Through analytical pyrolysis, it has been determined that up to 64 % of hydrocarbons are produced, of which 24 % correspond to aromatic compounds. Meanwhile, 20 % of oxygenated compounds were obtained, with ketones, furans, and acids being the most predominant families.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2023.10.031 | DOI Listing |
Adv Sci (Weinh)
January 2025
Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.
Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China. Electronic address:
Diabetic wounds often exhibit a chronic non-healing state due to the combined effects of multiple factors, including hyperglycemia, impaired angiogenesis, immune dysfunction, bacterial infection, and excessive oxidative stress. Despite the availability of various therapeutic strategies, effectively managing the complex and prolonged healing process of diabetic infected wounds remains challenging. In this study, we combined the natural antidiabetic drug lipoic acid (LA) with the RADA16-YIGSR (RY) peptide obtained through solid-phase synthesis, utilizing reversible hydrogen bonds and coordination bonds for binding.
View Article and Find Full Text PDFFoods
January 2025
Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
Litchi is one of the ancient fruits that originated in China, renowned for its high nutrition and rich flavor, and Xianjinfeng (XJF) stands as one of the most notable varieties in terms of its flavor. Investigating the metabolic changes in taste compounds during fruit development offers deeper insights into the formation patterns of fruit quality. In this study, we conducted extensive metabonomic research on the accumulation patterns of taste compounds (carbohydrates, organic acids, and amino acids) across three developmental stages of XJF litchi.
View Article and Find Full Text PDFFoods
January 2025
Tianjin Key Laboratory of Food Biotechnology, Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
Alum, an essential additive in sweet potato vermicelli (SPV) production, is harmful to health. To eliminate the harm to the human body caused by alum in sweet potato vermicelli, and considering the different viscous properties of gliadin fractions, an experiment was performed to replace alum with gliadin fractions to enhance the boiling resistance of SPV in this study. The results showed that the longest boiling-resistant time of fresh SPV extended to 34.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China. Electronic address:
Although hydroxyl radicals (OH) degrade organic pollutants nonselectively, their mineralization rate during the treatment of waste leachate biological treatment effluent (BTL) using Fenton or Fenton-like systems is not high, and the reason is unknown. In this study, we investigated three typical Fenton-like systems that act on dissolved organic matter (DOM) in BTL. We analyzed the molecular composition of DOM resistant to OH, using ultrahigh resolution mass spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!