Recent advances in nano- and micro-scale carrier systems for controlled delivery of vaccines.

Biomaterials

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. Electronic address:

Published: December 2023

AI Article Synopsis

  • Vaccines are essential for preventing infectious diseases and saving lives, with substantial focus on their role during the COVID-19 pandemic for mass immunization.
  • Recent advancements in vaccine delivery focus on using nano- and micro-scale carriers to enhance stability and effectiveness, particularly for nucleic acid-based vaccines.
  • The review covers various delivery systems, including nanoparticles, hydrogels, and innovative microneedle patches, while also addressing future challenges in clinical application and manufacturing.

Article Abstract

Vaccines provide substantial safety against infectious diseases, saving millions of lives each year. The recent COVID-19 pandemic highlighted the importance of vaccination in providing mass-scale immunization against outbreaks. However, the delivery of vaccines imposes a unique set of challenges due to their large molecular size and low room temperature stability. Advanced biomaterials and delivery systems such as nano- and mciro-scale carriers are becoming critical components for successful vaccine development. In this review, we provide an updated overview of recent advances in the development of nano- and micro-scale carriers for controlled delivery of vaccines, focusing on carriers compatible with nucleic acid-based vaccines and therapeutics that emerged amid the recent pandemic. We start by detailing nano-scale delivery systems, focusing on nanoparticles, then move on to microscale systems including hydrogels, microparticles, and 3D printed microneedle patches. Additionally, we delve into emerging methods that move beyond traditional needle-based applications utilizing innovative delivery systems. Future challenges for clinical translation and manufacturing in this rapidly advancing field are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2023.122345DOI Listing

Publication Analysis

Top Keywords

delivery vaccines
12
delivery systems
12
nano- micro-scale
8
controlled delivery
8
delivery
6
systems
5
vaccines
5
advances nano-
4
micro-scale carrier
4
carrier systems
4

Similar Publications

Roadmap to discovery and early development of an mRNA loaded LNP formulation for liver therapeutic genome editing.

Expert Opin Drug Deliv

January 2025

Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.

Introduction: mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, chimericantigen receptor T  (CAR T) celltherapies and protein replacement.  mRNAis large, charged, and easily degraded by nucleases.

View Article and Find Full Text PDF

Visualizing lipid nanoparticle trafficking for mRNA vaccine delivery in non-human primates.

Mol Ther

January 2025

Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University; Cambridge, MA, USA, 02139; Howard Hughes Medical Institute; Chevy Chase, MD, USA, 20815; Department of Materials Science of Engineering; Massachusetts Institute of Technology; Cambridge, MA, USA, 02139. Electronic address:

mRNA delivered using lipid nanoparticles (LNPs) has become an important subunit vaccine modality, but mechanisms of action for mRNA vaccines remain incompletely understood. Here, we synthesized a metal chelator-lipid conjugate enabling positron emission tomography (PET) tracer labeling of LNP/mRNA vaccines for quantitative visualization of vaccine trafficking in live mice and non-human primates (NHPs). Following i.

View Article and Find Full Text PDF

Expanding the Potential of Circular RNA (CircRNA) Vaccines: A Promising Therapeutic Approach.

Int J Mol Sci

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.

In recent years, circular RNAs (circRNAs) have garnered significant attention due to their unique structure and function, positioning them as promising candidates for next-generation vaccines. The circRNA vaccine, as an RNA vaccine, offers significant advantages in preventing infectious diseases by serving as a vector for protein expression through non-canonical translation. Notably, circRNA vaccines have demonstrated enduring antigenic expression and generate a larger percentage of neutralizing antibodies compared to mRNA vaccines administered at the same dosage.

View Article and Find Full Text PDF

Roles of Mature Domain Targeting Signals (MTSs) for Protein Translocation and Secretion in .

Int J Mol Sci

December 2024

Institute of Food Technology, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria.

is a potential bacterial cell factory to develop delivery systems for vaccines and therapeutic proteins. Much progress has been made in applications using engineered against, e.g.

View Article and Find Full Text PDF

Cancer-Targeting Applications of Cell-Penetrating Peptides.

Int J Mol Sci

December 2024

Research Unit on Computational Biology and Drug Design, Children's Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico.

Cell-penetrating peptides (CPPs) offer a unique and efficient mechanism for delivering therapeutic agents directly into cancer cells. These peptides can traverse cellular membranes, overcoming one of the critical barriers in drug delivery systems. In this review, we explore recent advancements in the application of CPPs for cancer treatment, focusing on mechanisms, delivery strategies, and clinical potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!