Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we establish an efficient enzymatic approach for producing novel inotodiyl-oleates (IOs) from pure inotodiol and oleic acid to improve the properties of inotodiol. For the esterification between inotodiol and oleic acid, CALA and n-hexane were the optimal biocatalyst and solvents for forming IOs with 80.17% conversion yield. These IOs comprised two distinct monoesters, the C3 or C22 ester forms of inotodiol. Intriguingly, no diesters were detected. The IOs had a melting point of 53.48 °C, much lower than that of inotodiol (192.06 °C). The in vitro digestion rate of IOs (25-28%) was significantly (p < 0.05) lower than that of cholesteryl-oleate (60%). Additionally, IOs exhibited much lower in vivo absorption than inotodiol when orally administered using different formulations (p < 0.05). The results indicated that IOs were resistant to enzymatic digestion in the small intestine, which could be advantageous in targeting the large intestine for disease treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.137897 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!