Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rational heterojunctions for antibiotics degradation have sparked significant attention in wastewater purification. In this study, we report a unique S-scheme photocatalytic system by in-situ growth of CuBiO quantum dots (QDs) onto {101} facet of TiO spindles (TiO-P) via hydrothermal transformation of Na-titanate nanotubes, which is observed by transmission electron microscopy technology. The CuBiO/TiO-P effectively achieves photo-degradation of tetracycline (TC) using visible light (e.g. an 82% TC degradation efficiency at 60 min), which is attributed to the promotion of the charge separation and retaining strong redox capacity at the heterojunction interfaces via the active species of O, OH, and h. Moreover, density functional theory (DFT) calculations show that a built-in electric field forms at the interface of the S-scheme heterojunction. In all, this work introduces a straightforward in-situ hydrothermal growth method to construct S-scheme photocatalysts for effective water treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.10.141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!