Objective: To obtain high-purity nasal epithelial cells (NEC) while avoiding the irritation experienced by patients during nasal biopsies.
Methods: This prospective, observational study enrolled patients undergoing surgical treatment for nasal septum deviation. After general anaesthesia, a novel nasal scraping spoon was used to collect epithelial cells from the mid-part of the inferior turbinate. The cells were evenly plated on six-well plates coated with rat tail collagen. The morphology and growth of the cells were observed at different time-points using an inverted phase-contrast microscope. Immunofluorescent staining of cytokeratin 18 was used to identify NEC. Ki67 staining was used to check cell viability.
Results: This study collected samples from 19 patients during a short procedure. No postoperative complications were observed. Cell samples ranging from 8.31 × 10 to 2.04 × 10 cells/sample were obtained. The culture model was suitable for primary NEC culture as demonstrated by the faster proliferation (5-7 days). There was no fungal or bacterial contamination. Immunofluorescent staining confirmed the presence and proliferative activity of NEC in the cultures.
Conclusion: A novel nasal scraping spoon provided an easy sampling method, avoided nasal injuries and psychological barriers to sampling and sufficient viable NEC to establish primary cultures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623993 | PMC |
http://dx.doi.org/10.1177/03000605231207759 | DOI Listing |
Curr Med Chem
January 2025
Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
Background: Hyperuricemia (HUA) is a condition characterized by excessive uric acid production and/or inadequate uric acid excretion due to abnormal purine metabolism in the human body. Uric acid deposits resulting from HUA can lead to complications such as renal damage. Currently, drugs used to treat HUA lack specificity and often come with specific toxic side effects.
View Article and Find Full Text PDFPediatr Dev Pathol
January 2025
Lauren V. Ackerman Laboratory of Surgical Pathology, Washington University Medical Center, St. Louis, MO, USA.
A desmoplastic small round cell tumor (DSRCT) presented in a 13-year-old female with an acute abdomen due to torsion of a fallopian tube cyst. She was found to have an incidental 2 cm pedunculated, solid, and multicystic mass attached to the pelvic floor on laparoscopy. The neoplasm had a variably myxoid and spindle cell pattern with nests and cords of small cells, forming pseudocysts, and true cysts lined by ciliated epithelium which were PAX-8+ and ER+/PR+.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan.
Various tubular diseases in patients with multiple myeloma (MM) are caused by monoclonal immunoglobulin light chains (LCs). However, the physicochemical characteristics of the disease-causing LCs contributing to the onset of MM-associated tubular diseases remain unclear. We herein report a rare case of MM-associated combined tubulopathies: non-crystalline light chain proximal tubulopathy (LCPT) and crystalline light chain cast nephropathy (LCCN).
View Article and Find Full Text PDFBiofactors
January 2025
Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China.
Breast cancer continues to be a major health issue for women worldwide, with vimentin (VIM) identified as a crucial factor in its progression due to its role in cell migration and the epithelial-to-mesenchymal transition (EMT). This study focuses on elucidating VIM's regulatory mechanisms on the miR-615-3p/PICK1 axis. Utilizing the 4T1 breast cancer cell model, we first used RNA-seq and proteomics to investigate the changes in the APA of PICK1 following VIM knockout (KO).
View Article and Find Full Text PDFInt J Med Sci
January 2025
Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University. Dongguan, Guangdong 523808, China.
Allergic diseases are a group of chronic inflammatory disorders driven by abnormal immune responses. Dendritic cells (DCs) play a pivotal role in the initiation and progression of allergic diseases by modulating T cell responses. Extensive progress has been made in characterizing crucial roles of metabolic reprogramming in the regulation of immune cell functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!