A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Circular RNA (circ)_0053277 Contributes to Colorectal Cancer Cell Growth, Angiogenesis, Metastasis and Glycolysis. | LitMetric

Circular RNA (circ)_0053277 Contributes to Colorectal Cancer Cell Growth, Angiogenesis, Metastasis and Glycolysis.

Mol Biotechnol

Department of Gastroentero-Anorectal Surgery, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China.

Published: November 2024

Circular RNAs (circRNAs) have been found to be abnormally expressed in many cancers, including colorectal cancer (CRC). Circ_0053277 has been found to mediate CRC malignant processes and may be a key regulator for CRC progression. Therefore, its role and potential molecular mechanism in CRC process deserve further investigation. Quantitative real-time PCR was used to detect the expression levels of circ_0053277, microRNA-520 h (miR-520 h) and hexokinase 1 (HK1). Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, wound healing assay, transwell assay, and tube formation assay were used to detect CRC cell proliferation, apoptosis, migration, invasion, and angiogenesis. The protein levels of apoptosis-related markers and HK1 were detected by western blot. The relationship between circ_0053277 and miR-520 h or miR-520 h and HK1 in CRC cells was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Cell glycolysis was assessed by detecting glucose uptake and lactate production. The effect of silenced circ_0053277 on CRC tumor growth was evaluated by xenograft model in vivo. Our study found that circ_0053277 expression was elevated in CRC tissues and cells. Moreover, circ_0053277 knockdown suppressed CRC cell proliferation, angiogenesis, migration and invasion, while promoting apoptosis. In terms of mechanism, circ_0053277 sponged miR-520 h, and HK1 was the target of miR-520 h. Meanwhile, miR-520 h inhibitor reversed the inhibitory effect of circ_0053277 silencing on CRC cell progression, and HK1 overexpression also overturned the suppressive effect of miR-520 h on CRC cell growth, angiogenesis and metastasis. Moreover, circ_0053277 knockdown inhibited the glycolysis of CRC cells by regulating miR-520 h/HK1 pathway. In addition, knockdown of circ_0053277 reduced CRC tumor growth in vivo. Circ_0053277 promoted CRC cell growth, angiogenesis, metastasis and glycolysis by miR-520 h/HK1 pathway, confirming that circ_0053277 might be a potential clinical target for CRC treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12033-023-00936-3DOI Listing

Publication Analysis

Top Keywords

crc cell
20
crc
15
circ_0053277
13
cell growth
12
growth angiogenesis
12
angiogenesis metastasis
12
colorectal cancer
8
cell
8
metastasis glycolysis
8
cell proliferation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!