Background: Previous studies have revealed that sleep structure and hypoxemia are two important environmental factors for cognitive impairment in patients with obstructive sleep apnea-hypopnea syndrome (OSAHS). We hypothesized that the pathophysiological mechanisms between these two factors may also be involved in cognitive impairment in patients with OSAHS. Previous studies have suggested that alterations in serum glucose and lipid metabolism, inflammatory responses, and astrocyte markers not only contribute to sleep structural disorders in OSAHS but also affect the occurrence and development of this disease. Therefore, we hypothesized that alterations in the abovementioned indicators may be involved in cognitive impairment in OSAHS. Additionally, obesity is an important risk factor for OSAHS. This study therefore aimed to explore the correlation between serum indicators and cognitive impairment in patients with OSAHS.
Methods: Patients with OSAHS who underwent polysomnography in our hospital were recruited in this study. The overall cognitive function of patients were evaluated using the Mini mental State Examination (MMSE). Blood biochemical indicators such as glucose (GLU), triglycerides (TG), and triglyceride glucose (TyG) index were measured. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of serum glucagon-like peptide-1 receptor (GLP-1R), fibroblast growth factor 21 (FGF21), S100 calcium binding protein B (S100B), brain derived neurotrophic factor (BDNF), inflammatory factors such as C-reactive protein (CRP), tumor necrosis factor-α (TNFα), interleukin-4 (IL-4), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Spearman correlation analysis was used to determine if the indicator was related to cognitive function, and backward linear regression analysis was used to identify the main risk factors for cognitive impairment in non-obese and obese patients with OSAHS.
Results: Among 34 patients, 19 were non-obese and 15 were obese. Obese patients exhibited higher AHI compared to non-obese individuals, and the difference was statistically significant (p < 0.05). In non-obese patients, Spearman correlation analysis revealed a negative correlation between serum GLU, IL-4, and MMSE scores (p < 0.05); IL-6 was positively correlated with MMSE (p < 0.05). In addition, GLU and IL-6 were independently correlated with MMSE in non-obese patients (p < 0.05). In obese patients, serum TG and TyG were positively correlated with MMSE scores (p < 0.05); age, BMI, and IL-4 were negatively correlated with MMSE scores (p < 0.05). In addition, age and IL-4 were independently correlated with MMSE in obese patients (p < 0.05).
Conclusions: Our data suggested that GLU and IL-6 were independently correlated with cognitive impairment in non-obese patients with OSAHS; age and IL-4 were independently correlated with cognitive impairment in obese patients. Early detection of this difference in heterogeneity may provide theoretical support for future investigations in prevention and treatment of cognitive impairment in patients with OSAHS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11325-023-02942-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!