An ectomycorrhizal fungus Pisolithus albus establishes the natural symbiosis with plant roots on extreme heavy metal (HM)-rich soil and enables their survival in toxic metal concentrations. Understanding P. albus key genes and pathways behind strong metal tolerance is crucial for its successful application in the rehabilitation of metal-contaminated barren lands. Therefore, this study aimed to analyze the whole transcriptome profile of P. albus under individual and combined metal stress of copper (Cu) and cadmium (Cd). At 480 µM Cu and 16 µM Cd toxic concentrations, P. albus has shown growth and survival and accumulated high metal (1.46 µg Cu and 1.13 µg Cd per mg of dry mycelia). The study found a stronger response of P. albus to single-metal stress in high concentration as compared to multi-metal stress in relatively lower concentration. Hence, the intensity of fungal response to HM stress is mainly determined by the metal concentration involved in stress. We have found a total of 11 pathways significantly associated with HM stress, among which amino acid, lipid, and carbohydrate metabolisms were highly affected. The functional enrichment of differentially expressed genes has shown the induced biosynthesis of arginine, melanin, metal chelating agents, membrane phospholipids, fatty acids, folate, pantothenate, ergothioneine, and other antioxidant agents; upregulation of zinc ion uptake, potassium transporters, and lysine degradation; and reduction of phosphatidylcholine degradation, incorrect protein folding, iron uptake, and potassium efflux as the top efficient tolerance mechanisms of P. albus against HM stress. The current study would contribute to understanding fungal HM tolerance and its further utilization in the bioremediation of metal-contaminated abandoned lands. The validation of RNA-sequencing analysis with RT-qPCR of selected genes showed the high credibility of the presented data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-30592-8 | DOI Listing |
AMB Express
January 2025
Central Laboratory for Agricultural Climate, Agricultural Research Center, Dokki, Giza, Egypt.
Afforestation projects on saline land, using Eucalyptus trees and ectomycorrhizal fungi, are crucial for restoring affected areas and promoting ecological and economic benefits, particularly in saline-affected areas. This study was conducted to isolate Pisolithus sp. and estimate its potential to improve the growth performance of Eucalyptus globulus seedlings under salt-stress conditions.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Hebei Agricultural University, Baoding, China.
Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.
View Article and Find Full Text PDFFEMS Microbiol Rev
December 2024
Department of Biology, Stanford University, Stanford CA 94305, USA.
Bacteria and ectomycorrhizal fungi (EcMF) represent two of the most dominant plant root-associated microbial groups on Earth, and their interactions continue to gain recognition as significant factors that shape forest health and resilience. Yet we currently lack a focused review that explains the state of bacteria-EcMF interaction research in the context of experimental approaches and technological advancements. To these ends, we illustrate the utility of studying bacteria-EcMF interactions, detail outstanding questions, outline research priorities in the field, and provide a suite of approaches that can be used to promote experimental reproducibility, field advancement, and collaboration.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
, an ectomycorrhizal fungus, forms a symbiotic relationship with , a rare and endangered species crucial to desert riparian ecosystems. In this study, endofungal bacteria (EFBs) within the fruiting bodies of were confirmed by a polyphasic approach, including genomic sequencing, real-time quantitative PCR targeting the 16S rRNA gene, full-length and next-generation sequencing (NGS) of the 16S rRNA gene, and culture methods. The genera , , , and were abundant in the EFBs of fruiting bodies associated with three hosts and were consistently present across different developmental stages.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Institute of Applied Biotechnology, College of Agronomy and Life Sciences, Shanxi Datong University, Datong 037009, China.
Native ectomycorrhizal fungi (ECMF) are generally more effective than non-native ECMF in facilitating the phytoremediation of heavy metal (HM) ions from contaminated soils. This study aimed to investigate the contributions of four ECMF species-, , , and -that were isolated from mining areas to the growth, water status, photosynthesis, and metallothionein gene expression of exposed to varying concentrations of lead (Pb). The experiment lasted two months and involved .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!