Virophagy, the selective autophagosomal engulfment and lysosomal degradation of viral components, is crucial for neuronal cell survival and antiviral immunity. However, the mechanisms leading to viral antigen recognition and capture by autophagic machinery remain poorly understood. Here, we identified cyclin-dependent kinase-like 5 (CDKL5), known to function in neurodevelopment, as an essential regulator of virophagy. Loss-of-function mutations in CDKL5 are associated with a severe neurodevelopmental encephalopathy. We found that deletion of CDKL5 or expression of a clinically relevant pathogenic mutant of CDKL5 reduced virophagy of Sindbis virus (SINV), a neurotropic RNA virus, and increased intracellular accumulation of SINV capsid protein aggregates and cellular cytotoxicity. Cdkl5-knockout mice displayed increased viral antigen accumulation and neuronal cell death after SINV infection and enhanced lethality after infection with several neurotropic viruses. Mechanistic studies demonstrated that CDKL5 directly binds the canonical selective autophagy receptor p62 and phosphorylates p62 at T269/S272 to promote its interaction with viral capsid aggregates. We found that CDKL5-mediated phosphorylation of p62 facilitated the formation of large p62 inclusion bodies that captured viral capsids to initiate capsid targeting to autophagic machinery. Overall, these findings identify a cell-autonomous innate immune mechanism for autophagy activation to clear intracellular toxic viral protein aggregates during infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760973 | PMC |
http://dx.doi.org/10.1172/JCI168544 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!