The photophysical properties of dyes composed of two squaraine chromophores fused with a benzodipyrrole central moiety (BS1 and BS2), were investigated using steady-state absorption, fluorescence, and transient absorption spectroscopy. The dyes exhibit solvent-independent split electronic absorption due to exciton-coupling. Interestingly significant solvent-dependent fluorescence properties were observed. In toluene, they emit from the lowest excited state, while in methanol, they show weak emission in the higher energy region. In the low-temperature glass matrix, emission from the lowest excited state dominates similarly to that in toluene. The transient absorption spectra exhibit similar ground-state bleaching in toluene and methanol, revealing the formation of delocalized excited states by exciton coupling independent of solvent. However, the excited state deactivates rapidly in ultrafast time scale in methanol, likely due to solvent interaction, leading to rapid non-radiative deactivation. The PEG film doped with the exciton-coupled bis-squaraine shows a distinct fluorescence response to methanol vapor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202300868 | DOI Listing |
J Am Chem Soc
December 2024
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering.
View Article and Find Full Text PDFNat Comput Sci
December 2024
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties.
View Article and Find Full Text PDFPhotochem Photobiol Sci
December 2024
Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan.
The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
Background -Smoking is associated with arrhythmia and sudden cardiac death, but the biological mechanisms remain unclear. In electrocardiogram (ECG) recordings abnormal durations of ventricular repolarization (QT interval), atrial depolarization (P wave), and atrioventricular depolarization (PR interval and segment), predict cardiac arrhythmia and mortality. Previous analyses of the National Health and Nutrition Examination Survey (NHANES) database for associations between smoking and ECG abnormalities were incomplete.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA.
Voltage-gated potassium channels (VGKCs) comprise the largest and most complex families of ion channels. Approximately 70 genes encode VGKC alpha subunits, which assemble into functional tetrameric channel complexes. These subunits can also combine to form heteromeric channels, significantly expanding the potential diversity of VGKCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!