Glucose-regulated protein 78 (GRP78) binds to and stabilizes melanocortin 4 receptor (MC4R), which activates protein kinase A (PKA) by regulating G proteins. GRP78 is primarily used as a marker for endoplasmic reticulum stress; however, its other functions have not been well studied. Therefore, in this study, we aimed to investigate the function of GRP78 during porcine embryonic development. The developmental quality of porcine embryos, expression of cell cycle proteins, and function of mitochondria were evaluated by inhibiting the function of GRP78. Porcine oocytes were activated to undergo parthenogenesis, and blastocysts were obtained after 7 days of in vitro culture. GRP78 function was inhibited by adding 20 μM HA15 to the in vitro culture medium. The inhibition in GRP78 function led to a decrease in G proteins release, which subsequently downregulated the cyclic adenosine monophosphate (cAMP)/PKA pathway. Ultimately, inhibition of GRP78 function induced the inhibition of CDK1 and cyclin B expression and disruption of the cell cycle. In addition, inhibition of GRP78 function regulated DRP1 and SIRT1 expression, resulting in mitochondrial dysfunction. This study provides new insights into the role of GRP78 in porcine embryonic development, particularly its involvement in the regulation of the MC4R pathway and downstream cAMP/PKA signaling. The results suggest that the inhibition of GRP78 function in porcine embryos by HA15 treatment may have negative effects on embryo quality and development. This study also demonstrated that GRP78 plays a crucial role in the functioning of MC4R, which releases the G protein during porcine embryonic development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202301356R | DOI Listing |
Sheng Li Xue Bao
December 2024
Health Science Center, East China Normal University, Shanghai 200241, China.
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid decline in renal function. Renal ischemia-reperfusion injury (RIRI) is one of the main causes of AKI with the underlying mechanism incompletely clarified. The liver X receptors (LXRs), including LXRα and LXRβ, are members of the nuclear receptor superfamily.
View Article and Find Full Text PDFAdv Rheumatol
January 2025
Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
Background: Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are adaptive mechanisms for conditions of high protein demand, marked by an accumulation of misfolded proteins in the endoplasmic reticulum (ER). Rheumatic autoimmune diseases (RAD) are known to be associated with chronic inflammation and an ERS state. However, the activation of UPR signaling pathways is not completely understood in Sjögren's disease (SD).
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
Background: Proactively preventing postpartum weight retention (PPWR) is one of the effective intervention strategies to reduce the occurrence of obesity in women. Population studies have shown that serum folate levels are closely related to body weight. The regulation of folic acid on lipid metabolism has been fully confirmed in both in vivo and in vitro studies.
View Article and Find Full Text PDFNutrients
December 2024
Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia.
Background: Obesity is a risk factor for developing cardiovascular diseases (CVDs) by impairing normal vascular function. Natural products are gaining momentum in the clinical setting due to their high efficacy and low toxicity. extract (CFE) has been shown to control appetite and promote weight loss; however, its effect on vascular function remains poorly understood.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Psychiatry, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea.
Epidemiological studies have linked fine dust pollution to depression, yet the underlying mechanisms remain unclear. Oxidative stress and endoplasmic reticulum (ER) stress are known contributors to depression, but their induction by particulate matter (PM), particularly PM2.5, in animal models has been limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!