Protein identification and discrimination at the single-molecule level are big challenges. Solid-state nanopores as a sensitive biosensor have been used for protein analysis, although it is difficult to discriminate proteins with similar structures in the traditional discrimination method based on the current blockage fraction. Here, we select ferritin and apo-ferritin as the model proteins that exhibit identical exterior and different interior structures and verify the practicability of their discrimination with flexibility features by the strategy of gradually decreasing the nanopore size. We show that the larger nanopore (relative to the protein size) has no obvious effect on discriminating two proteins. Then, the comparable-sized nanopore plays a key role in discriminating two proteins based on the dwell time and fraction distribution, and the conformational changes of both proteins are also studied with this nanopore. Finally, in the smaller nanopore, the protein molecules are trapped rather than translocated, where two proteins are obviously discriminated through the current fluctuation caused by the vibration of proteins. This strategy has potential in the discrimination of other important similar proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.3c02041 | DOI Listing |
Heliyon
October 2024
Department of Life Science, University of Trieste, via via Valerio 28-28/1, 34127, Trieste, Italy.
Asbestos fiber exposure triggers chronic inflammation and cancer. Asbestos fibers can adsorb different types of proteins. The mechanism of this adsorption, not yet completely understood, has been studied in detail mainly with serum albumin and was shown to induce structural changes in the bound protein.
View Article and Find Full Text PDFNat Methods
April 2024
Ian Holmes Imaging Centre and ARC Industrial Training Centre for Cryo Electron Microscopy of Membrane Proteins, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
In transmission electron microscopy (TEM), cameras are square or rectangular but beams are round so the circular lobes irradiate adjacent areas, precluding further neighboring acquisition for beam-sensitive samples. We present condenser aperture plates with square and rectangular shapes that improve the efficiency of area usage by 70% and enhance montage imaging for beam-sensitive specimens. We demonstrate the compatibility of these condenser aperture plates with high-resolution cryogenic TEM by reconstructing a 1.
View Article and Find Full Text PDFAnal Chem
November 2023
Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
ACS Appl Mater Interfaces
October 2023
Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.
Proteins unfold in chaotropic salt solutions, a process that is difficult to observe at the single protein level. The work presented here demonstrates that a liquid-based atomic force microscope and graphene liquid-cell-based scanning transmission electron microscope make it possible to observe chemically induced protein unfolding. To illustrate this capability, ferritin proteins were deposited on a graphene surface, and the concentration-dependent urea- or guanidinium-induced changes of morphology were monitored for holo-ferritin with its ferrihydrite core as well as apo-ferritin without this core.
View Article and Find Full Text PDFArch Biochem Biophys
September 2023
Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Furo-Cho, Chikusa-ku, Nagoya, 464-8603, Japan.
Ferritin is a spherical nanocage protein for iron storage, composed of 24 light- or heavy-polypeptide chain subunits. A single ferritin molecule can carry up to 4500 iron atoms in its core, which plays an important role in suppressing intracellular iron toxicity. Serum ferritin levels are used as a marker for the total amount of iron stored in the body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!