A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nociceptive and Transcriptomic Responses in a Swine Diabetic Wound Model Treated With a Topical Angiotensin 1 Receptor Antagonist. | LitMetric

Background: Painful, treatment-resistant wounds are prevalent among diabetic patients and significantly affect health-related quality of life (HRQOL). Topical treatments may help alleviate pain without risk of dependence or side effects. However, there is a lack of topical wound compounds targeting pain-specific receptors. One possible target is proinflammatory angiotensin 1 receptor (AT1R), which is upregulated in diabetic skin and has been implicated in nociception.

Objectives: We investigated the effects of topical valsartan, an AT1R antagonist, on pain (nociceptive thresholds) and gene expression changes (transcriptomics) in a swine model of diabetic wounds.

Methods: Eight wounds were surgically induced in diabetic, hyperglycemic Yucatan miniature swine ( n = 4). Topical AT1R antagonist was applied to wounds on one side and vehicle on the other side. Nocifensive testing was conducted at baseline and then weekly, beginning 7 days after wound induction. Mechanical and thermal stimuli were applied to the wound margins until a nocifensive reaction was elicited or a predetermined cutoff was reached. After 7 weeks of testing, tissue from the dorsal horn, dorsal root ganglion, and wounds were sequenced and analyzed with DESeq2. Unbiased pathway analyses using Metascape were conducted on differentially expressed genes.

Results: There was no significant difference in mechanical tolerance threshold between AT1R antagonist-treated and vehicle-treated wounds ( p = .106). Thermal tolerance was significantly higher in AT1R antagonist-treated wounds compared to vehicle-treated ( p = .015). Analysis of differentially expressed genes revealed enriched pathways of interest: interleukin-18 signaling in dorsal horn laminae IV-V and sensory perception of mechanical stimulus in wound tissue.

Discussion: In this study, wounds modeling diabetic ulcers were created in hyperglycemic swine and treated with a topical AT1R antagonist. AT1R-antagonist-treated wounds had a higher tolerance threshold than vehicle-treated wounds for thermal hyperalgesia, but not mechanical allodynia. Pathway analyses of differentially expressed genes revealed several pathways of interest for future pain research. Although further studies are needed to confirm the findings, this study can improve nursing care by providing information about a potential future treatment that may be used to decrease pain and improve HRQOL in patients with diabetic wounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10922245PMC
http://dx.doi.org/10.1097/NNR.0000000000000704DOI Listing

Publication Analysis

Top Keywords

at1r antagonist
12
differentially expressed
12
wounds
10
treated topical
8
angiotensin receptor
8
topical at1r
8
dorsal horn
8
pathway analyses
8
tolerance threshold
8
at1r antagonist-treated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!