Lung cancer (LCa), the most frequent malignancy worldwide, causes millions of mortalities each year. Overexpression of the long noncoding RNA MIR210HG in LCa has been established; however, a more comprehensive investigation into its biological role within LCa is imperative. This study aimed to validate the MIR210H levels in LCa tissues and cells. The expression of indicated genes was evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and/or Western blotting. The viability, proliferation, migration, and invasion of LCa cells were measured using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), colony formation, wound healing, and transwell assays, respectively. The methylation levels of LCa cells were determined via methylation-specific PCR; additionally, chromatin immunoprecipitation or RNA immunoprecipitation assays were performed to determine the targeting relationship between DNA methyltransferase 1 (DNMT1) and the SH3-domain containing CRB2 like 3 (SH3GL3) promoters and the interaction between DNMT1 and MIR210HG, respectively. Our findings revealed the upregulation of MIR210HG, coupled with a diminished expression of SH3GL3 in LCa tissues and cells. Knockdown of MIR210HG or overexpression of SH3GL3 suppressed the proliferative, migratory, and invasive capacities of the cells. DNMT1 bound to the SH3GL3 promoter region, and MIR210HG inhibited the transcription of SH3GL3 by recruiting DNMT1. These findings indicate that MIR210HG facilitates LCa cell growth and metastasis by repressing SH3GL3 transcription via the recruitment of DNMT1 to the SH3GL3 promoter region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/kjm2.12775 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!