Correction for 'An efficient metal free synthesis of 2-aminobenzothiozoles - a greener approach' by Krithika Ganesh , , 2023, , 564-568, https://doi.org/10.1039/D2OB01981G.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3ob90143b | DOI Listing |
Small
January 2025
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.
View Article and Find Full Text PDFSmall
January 2025
Department of Thyroid Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China.
Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.
View Article and Find Full Text PDFSmall
January 2025
Nanotechnology and Bio-Engineering Research Group, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland.
The rising demand for efficient energy storage in flexible electronics is driving the search for materials that are well-suited for the fabrication of these devices. Layered Double Hydroxides (LDHs) stand out as a remarkable material with a layered structure that embodies exceptional electrochemical properties. In this study, both double-shelled and single-shelled NiFe-Layered Double Hydroxide (LDH) particles are prepared using spindle-shaped MIL-101(Fe) as the template.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China.
X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.
View Article and Find Full Text PDFMed Sci Monit
January 2025
Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia.
BACKGROUND Dental caries removal is conventionally done using carbide burs, but non-metallic polymer burs have recently been developed with the aim of being more selective and causing less pain. The objective of the study is to evaluate and compare the effectiveness of caries removal, time taken, and patient compliance during restorations using smart bur and carbide burs in pediatric patients. MATERIAL AND METHODS A clinical study was designed and conducted at the Pedodontics Outpatient Department, with a focus on 40 children between 6 and 12 years old, who were split into 2 groups consisting of 20 children each: group 1, using a carbide conventional rotary bur, and group 2, using a smart bur.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!