In recent decades, aerogels have attracted tremendous attention in academia and industry as a class of lightweight and porous multifunctional nanomaterial. Despite their wide application range, the low mechanical durability hinders their processing and handling, particularly in applications requiring complex physical structures. "Mechanically strengthened aerogels" have emerged as a potential solution to address this drawback. Since the first report on aerogels in 1931, various modified synthesis processes have been introduced in the last few decades to enhance the aerogel mechanical strength, further advancing their multifunctional scope. This review summarizes the state-of-the-art developments of mechanically strengthened aerogels through multicompositional and multidimensional approaches. Furthermore, new trends and future directions for as prevailed commercialization of aerogels as plastic materials are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202307772 | DOI Listing |
Adv Colloid Interface Sci
January 2025
School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Institute of Environmental Engineering, Central South University, Changsha 410083, Hunan, China.
Rare earth elements (REEs) are crucial metallic resources that play an essential role in national economies and industrial production. The reclaimation of REEs from wastewater stands as a significant supplementary strategy to bolster the REEs supply. Adsorption techniques are widely recognized as environmentally friendly and sustainable methods for the separation of REEs from wastewater.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:
The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Horticulture, National Chung Hsing University, Taichung City 40227, Taiwan.
Trees are complex and dynamic living structures, where structural stability is essential for survival and for public safety in urban environments. Tree forks, as structural junctions, are key to tree integrity but are prone to failure under stress. The specific mechanical contributions of their internal conical structures remain largely unexplored.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea.
This study explores the use of propylene oxide-modified ethylenediamine (PPO-EDA) as a novel crosslinker and chain extender in polyurethane (PU) adhesives. PPO-EDA was synthesized and compared with ,-dimethylethylenediamine (DMEDA) to assess its impact on mechanical properties and adhesion performance. Key parameters such as NCO conversion, tensile strength, and lap shear strength were thoroughly evaluated.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), FEUP Campus, Rua Dr. Roberto Frias 400, 4200-465 Porto, Portugal.
The present work constitutes the initial experimental effort to characterise the dynamic tensile performance of basalt fibre grids employed in TRM systems. The tensile behaviour of a bi-directional basalt fibre grid was explored using a high-speed servo-hydraulic testing machine with specialised grips. Deformation and failure modes were captured using a high-speed camera.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!