Background: Stroke and other clinically significant embolic complications are well documented in the early period following transcatheter aortic valve replacement (TAVR). The CAPTIS device is an embolic protection system, designed to provide neurovascular and systemic protection by deflecting debris away from the brain's circulation, capturing the debris and thus avoiding systemic embolisation.

Aims: We aimed to study the safety and feasibility study of the CAPTIS complete cerebral and full-body embolic protection system during TAVR.

Methods: A first-in-human study investigated the safety, feasibility and debris capturing ability of CAPTIS during TAVR. Patients were followed for 30 days. The primary endpoints were device safety and cerebrovascular events at 72 hours.

Results: Twenty patients underwent TAVR using balloon-expandable or self-expanding valve systems. CAPTIS was successfully delivered, positioned, deployed, and retrieved in all cases, and TAVR was successfully completed without device-related complications. No cerebrovascular events were observed. High numbers of debris particles were captured in all patients.

Conclusions: The use of the CAPTIS full-body embolic protection system during TAVR was safe, and it captured a substantial number of debris particles. No patient suffered from a cerebrovascular event. A randomised clinical trial is warranted to prove its efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10719740PMC
http://dx.doi.org/10.4244/EIJ-D-23-00465DOI Listing

Publication Analysis

Top Keywords

embolic protection
16
protection system
16
first-in-human study
8
study captis
8
transcatheter aortic
8
aortic valve
8
valve replacement
8
safety feasibility
8
full-body embolic
8
cerebrovascular events
8

Similar Publications

Neutrophils are peripheral blood-circulating leukocytes that play a pivotal role in host defense against bacterial pathogens which upon activation, they release web-like chromatin structures called neutrophil extracellular traps (NETs). Here, we analyzed and compared the importance of myeloid differentiation factor 88 (MYD88), peptidyl arginine deiminase 4 (PAD4), and gasdermin D (GSDMD) for NET formation in vivo following sepsis and neutrophilia challenge. Injection of lipopolysaccharide (LPS)/E.

View Article and Find Full Text PDF

Objectives: This study aims to report on the application of degradable starch microspheres to provide flow diversion by means of temporary embolization of healthy tissues in oncological endovascular procedures when tumor feeding vessels are not selectively accessible.

Methods: This is a multicenter retrospective analysis of patients undergoing visceral embolization procedures of malignancies. The inclusion criteria were as follows: flow diversion performed by injection of degradable starch microspheres, visceral embolization procedures with unfeasible superselective catheterism of the target, and a malignant pathology.

View Article and Find Full Text PDF

Infective endocarditis (IE) is a life-threatening condition with increasing global incidence, primarily caused by , especially methicillin-resistant strains (MRSA). Biofilm formation by is a critical factor in pathogenesis, contributing to antimicrobial resistance and complicating the treatment of infections involving prosthetic valves and cardiovascular devices. Biofilms provide a protective matrix for MRSA, shielding it from antibiotics and host immune defenses, leading to persistent infections and increased complications, particularly in cases involving prosthetic materials.

View Article and Find Full Text PDF
Article Synopsis
  • Transcatheter aortic valve replacement (TAVR) is a key treatment for severe aortic stenosis, widely considered superior to traditional surgical methods.
  • Despite its benefits, TAVR carries risks, particularly cerebrovascular complications, which can arise from debris embolization and other procedural factors.
  • The review highlights the importance of understanding these complications, discussing their incidence, prevention strategies, and how to improve patient outcomes through better techniques.
View Article and Find Full Text PDF
Article Synopsis
  • The study explored how extracellular histone H4 contributes to acute respiratory distress syndrome (ARDS) triggered by oleic acid (OA) in mice.
  • The research found that levels of histone H4 increased significantly after OA injection, correlating with the severity of ARDS, and that pre-treatment with histone H4 worsened lung edema and mortality.
  • Histone H4 activated endothelial cells through mechanisms involving heparan sulfate degradation and certain receptors, leading to inflammation and thrombus formation in the lungs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!