Wilms' tumor gene 1: lessons from the interface between kidney development and cancer.

Am J Physiol Renal Physiol

Department of Human Genetics, Montreal Children's Hospital and McGill University, Montreal, Quebec, Canada.

Published: January 2024

In 1990, mutations of the Wilms' tumor-1 gene (), encoding a transcription factor in the embryonic kidney, were found in 10-15% of Wilms' tumors; germline mutations were associated with hereditary syndromes involving glomerular and reproductive tract dysplasia. For more than three decades, these discoveries prompted investigators to explore the embryonic role of WT1 and the mechanisms by which loss of leads to malignant transformation. Here, we discuss how alternative splicing of generates isoforms that act in a context-specific manner to activate or repress target gene transcription. WT1 also regulates posttranscriptional regulation, alters the epigenetic landscape, and activates miRNA expression. WT1 functions at multiple stages of kidney development, including the transition from resting stem cells to committed nephron progenitor, which it primes to respond to WNT9b signals from the ureteric bud. WT1 then drives nephrogenesis by activating WNT4 expression and directing the development of glomerular podocytes. We review the mutations that account for Denys-Drash syndrome, Frasier syndrome, and WAGR syndrome. Although the WT1 story began with Wilms' tumors, an understanding of the pathways that link aberrant kidney development to malignant transformation still has some important gaps. Loss of WT1 in nephrogenic rests may leave these premalignant clones with inadequate DNA repair enzymes and may disturb the epigenetic landscape. Yet none of these observations provide a complete picture of Wilms' tumor pathogenesis. It appears that the WT1 odyssey is unfinished and still holds a great deal of untilled ground to be explored.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00248.2023DOI Listing

Publication Analysis

Top Keywords

kidney development
12
wilms' tumor
8
wilms' tumors
8
malignant transformation
8
epigenetic landscape
8
wt1
7
wilms'
5
tumor gene
4
gene lessons
4
lessons interface
4

Similar Publications

Chemically Induced Dimerization via Nanobody Binding Facilitates in Situ Ligand Assembly and On-Demand GPCR Activation.

JACS Au

December 2024

Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.

Methods that enable the on-demand synthesis of biologically active molecules offer the potential for a high degree of control over the timing and context of target activation; however, such approaches often require extensive engineering to implement. Tools to restrict the localization of assembly also remain limited. Here we present a new approach for stimulus-induced ligand assembly that helps to address these challenges.

View Article and Find Full Text PDF

Research progress of gut microbiome and diabetic nephropathy.

Front Med (Lausanne)

December 2024

Department of Nephrology, Urology & Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.

Diabetic nephropathy is an important complication of diabetic microvascular injury, and it is also an important cause of end-stage renal disease. Its high prevalence and disability rate significantly impacts patients' quality of life while imposing substantial social and economic burdens. Gut microbiota affects host metabolism, multiple organ functions, and regulates host health throughout the life cycle.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) occurs in up to 50% of cardiac surgical patients and is often hemodynamically mediated. Point-of-care ultrasound is a non-invasive tool that has the potential to characterize intrarenal hemodynamics and predict the risk of AKI.

Objectives: We aimed to determine the predictive characteristics of intrarenal arterial and venous Doppler markers for postoperative AKI in cardiac surgical patients.

View Article and Find Full Text PDF

Purpose: Highly sensitized patients (HSPs) with kidney failure have limited access to kidney transplantation and poorer post-transplant outcomes. Prioritizing HSPs in kidney allocation systems and expanding the pool of deceased donors available to them has helped to reduce their wait times for transplant and enhanced post-transplant outcomes. The Canadian HSP Program was established by Canadian Blood Services in collaboration with provincial organ donation and transplantation programs throughout the country to increase transplant opportunities for transplant candidates needing very specific matches from deceased kidney donors.

View Article and Find Full Text PDF

Background: Kidney transplant recipients are uniquely exposed to the disordered bone metabolism associated with chronic kidney disease beginning before transplantation followed by chronic corticosteroid use after transplantation. Previous efforts to synthesize the rapidly accruing evidence regarding estimation and management of fracture risk in kidney transplant recipients are outdated and incomplete.

Objective: To synthesize the evidence informing the overall incidence, patient-specific risk prediction, and methods of prevention of fractures in patient living with a kidney transplant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!