Ecosystem degradation and fossil fuel depletion are the two foremost concerns to look for alternative fuels. Rapid population growth is primarily accountable for higher consumption of fossil fuel sources, although engine technology is achieving milestones in terms of fuel efficiency and lower exhaust emissions in order to contribute towards a sustainable environment. The main root cause of global warming is carbon dioxide emissions; therefore, it is imperative to assess the impact of alternative fuels in diesel engines with an aim to minimize carbon emissions. A current study deals with the reduction of carbon emissions and improvement of efficiency through addition of manganese nano-additive to di-ethyl ether and diesel fuel blend in particulate form. Fuel blends were formed by adding various proportions of manganese to high-speed diesel fuel and stirring the mixture while heating it for 10 min. The blends were then tested in diesel engines at two distinct loads and five engine speed ranges. Emission analyzer was used to ascertain the CO output of engine. At higher loads for 10 % diethyl ether in diesel, the increase in brake thermal efficiency was 24.19, 28.17 and 26.86 % when the manganese amount in blend was changed as 250 mg, 375 mg and 500 mg respectively. On the other side CO emissions increase by 11.57, 30.52 and 20.33 % for manganese concentrations of 250 mg, 375 mg and 500 mg respectively. Analysis performed with Design Expert 13 showed that the desirability was 0.796 for a blend of 375 mg manganese at 1300 rpm and 4500 W load with 33.0611 % BTE, 334.011kg/kWh BSFC, 67.8821Nm torque, and 6.072 % CO. Therefore, it can be deduced that manganese nanoparticle blends improved engine performance but CO emissions also increase which can be responsible for global warming and it should be reduced through catalytic converters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616403 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e21133 | DOI Listing |
Waste Manag
January 2025
Energy and Sustainability Department (EES), Federal University of Santa Catarina (UFSC), 88905-120, Araranguá, SC, Brazil. Electronic address:
Proper waste management and sustainable energy production are crucial for human development. For this purpose, this study evaluates the impact of blending percentage on energy recovery potential and environmental benefits of co-combustion of wastewater sludge and Brazilian low-rank coal. The sludge and coal were characterised in terms of their potential as fuel and co-combustion tests were carried out in a pilot-scale bubbling fluidised bed focused on the influence of the percentage of sludge mixture on the behaviour of co-combustion with coal in terms of flue gas composition and fluidised bed temperature stability.
View Article and Find Full Text PDFAnal Methods
January 2025
Program in Chemical and Biochemical Process Engineering, School of Chemistry, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, CEP 21941-909, Brazil.
Low-carbon fuels, emitting less carbon than fossil fuels, are proposed to help in the transition to a sustainable, decarbonized transport sector. The new biofuels being studied and developed in this context include hydrotreated vegetable oils (HVO). Its chemical composition, which is the same as fossil diesel (primarily composed of linear chain hydrocarbons C12-C24), makes HVO (more homogeneous mixtures of paraffinic hydrocarbons C10-C20, containing no sulfur or aromatics) a fuel with slightly lower density than fossil diesel due to these characteristics.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
The majority of industries throughout the world rely largely on fossil fuels as their primary energy source. However, these resources are finite and become scarcer by the day. Therefore, exploring alternative fuels and additives for diesel fuel is imperative to mitigate fuel consumption.
View Article and Find Full Text PDFEnergy Fuels
January 2025
Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States.
The Co-Optimization of Fuels and Engines (Co-Optima) is a research and development consortia funded by the U.S. Department of Energy, which has engaged partners from national laboratories, universities, and industry to conduct multidisciplinary research at the intersection of biofuels and combustion sciences.
View Article and Find Full Text PDFEnviron Pollut
January 2025
School of Energy and Power Engineering, Beihang University, Beijing, 100083, China. Electronic address:
With the projected expansion of the general aviation sector and recent breakthroughs in sustainable aviation fuels (SAF), accurately measuring emissions from novel aircraft engines powered by SAF is paramount for evaluating the role of aviation industry in emission reduction trends and environmental consequences. Current SAF research primarily centers on low blend ratios, neglecting data on 100% SAF. This study bridges this gap by experimentally determining emissions indices for gaseous pollutants (CO, CO, HC, NOx), total particulate matter (PM) counts and sizes, and non-volatile particulate matter (nvPM) number and mass concentrations from a heavy-fuel aircraft piston engines (HF-APE) using hydroprocessed esters and fatty acids-derived SAF (HEFA-SAF), adhering to airworthiness-standard sampling and measurement protocols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!