Exosomes, membrane-enclosed vesicles, are secreted by all types of cells. Exosomes can transport various molecules, including proteins, lipids, functional mRNAs, and microRNAs, and can be circulated to various recipient cells, leading to the production of local paracrine or distal systemic effects. Numerous studies have proved that exosomes can pass through the blood-brain barrier, thus, enabling the transfer of peripheral substances into the central nervous system (CNS). Consequently, exosomes may be a vital factor in the exchange of information between the periphery and CNS. This review will discuss the structure, biogenesis, and functional characterization of exosomes and summarize the role of peripheral exosomes deriving from tissues like the lung, gut, skeletal muscle, and various stem cell types in communicating with the CNS and influencing the brain's function. Then, we further discuss the potential therapeutic effects of exosomes in brain diseases and the clinical opportunities and challenges. Gaining a clearer insight into the communication between the CNS and the external areas of the body will help us to ascertain the role of the peripheral elements in the maintenance of brain health and illness and will facilitate the design of minimally invasive techniques for diagnosing and treating brain diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616655PMC
http://dx.doi.org/10.1002/mco2.410DOI Listing

Publication Analysis

Top Keywords

exosomes
8
central nervous
8
nervous system
8
role peripheral
8
brain diseases
8
emerging role
4
role exosomes
4
exosomes communication
4
communication periphery
4
periphery central
4

Similar Publications

tRF-AspGTC Promotes Intracranial Aneurysm Formation by Controlling TRIM29-Mediated Galectin-3 Ubiquitination.

Research (Wash D C)

January 2025

Department of Neurosurgery and Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.

Transfer RNA-derived small RNAs, a recently identified class of small noncoding RNAs, play a crucial role in regulating gene expression and are implicated in cerebrovascular diseases. However, the specific biological roles and mechanisms of transfer RNA-derived small RNAs in intracranial aneurysms (IAs) remain unclear. In this study, we identified that the transfer RNA-Asp-GTC derived fragment (tRF-AspGTC) is highly expressed in the IA tissues of both humans and mice.

View Article and Find Full Text PDF

Background: Small extracellular vesicles (sEV) released by tumor cells (tumor-derived sEV; TEX) mediate intercellular communication between tumor and non-malignant cells and were shown to impact disease progression. This study investigates the relationship between the expression levels of the vesiculation-related genes linked to sEV production and the tumor microenvironment (TME).

Methods: Two independent gene sets were analyzed, both previously linked to sEV production in various non-malignant or malignant cells.

View Article and Find Full Text PDF

Background: Cerebral palsy (CP) is a neurodevelopmental disorder and motor disorder syndrome. It has been confirmed that mesenchymal stem cells (MSCs) and mouse nerve growth factor (mNGF) can repair brain tissue damage and nerve injury; however, exosomes derived from healthy cells may have a comparable therapeutic potential as the cells themselves.

Objectives: The purpose of this study was to explore the improvement effect of human umbilical cord mesenchymal stem cell (hUC-MSCs)-derived exosomes on a CP model and determine whether there is a synergistic effect when combined with mNGF.

View Article and Find Full Text PDF

Purpose: The aim of our report was to recognize bladder cancer (BC)-specific serum exosome-derived long non-coding RNAs (lncRNAs) profile for early diagnosis of BC.

Methods: Potential BC-specific exosomal lncRNA indicators were discerned by genome-wide microarray profiling analysis of serum exosomes from 10 healthy participants and 10 early stage BC patients (Ta and T1), followed by multi-stage validation through quantitative real-time PCR (qRT-PCR) in BC cells, culture solution as well as 200 serum specimens and 50 tissue specimens from non-muscle-invasive bladder cancer (NMIBC) patients. The diagnostic panel was established using logistic regression and evaluated by receiver-operating characteristic (ROC) curve.

View Article and Find Full Text PDF

Oral delivery of dihydroartemisinin for the treatment of melanoma via bovine milk exosomes.

Drug Deliv Transl Res

January 2025

Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, Uttar Pradesh, India.

Cancer, particularly skin cancer, is a major cause of mortality worldwide, with melanoma being one of the most aggressive and challenging to treat types. Current therapeutic options, such as dacarbazine (DTIC), have limitations due to dose-related toxicities like liver toxicity. Therefore, there is a need for new and effective treatments for melanoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!