Isoxazole derivatives were synthesized via a one-pot method utilizing 2-methylquinoline derivatives as template substrates, sodium nitrite as a nitrogen-oxygen source, and solely using aluminum trichloride as the additive. This approach circumvents the need for costly or highly toxic transition metals and presents a novel pathway for the synthesis of isoxazole derivatives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616705 | PMC |
http://dx.doi.org/10.3762/bjoc.19.113 | DOI Listing |
Heliyon
December 2024
Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia.
The goal of this work was to synthesize new compounds for anticancer evaluation as a trial to obtain new antitumor agents with higher activity and fewer side effects. Therefore, the precursor 2,2'-(1,4-phenylenebis (thiazole-4,2-diyl))bis (3-(dimethylamino)acrylonitrile) was used to synthesize various azolopyrimidine derivatives connected to the thiazole moiety. Compounds -, including pyrazolopyrimidine, triazolopyrimidine, and others, were produced by reacting enaminonitrile with different -nucleophiles.
View Article and Find Full Text PDFFront Neural Circuits
December 2024
Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
Functional recovery from brain damage, such as stroke, is a plastic process in the brain. The excitatory glutamate -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) plays a crucial role in neuronal functions, and the synaptic trafficking of AMPAR is a fundamental mechanism underlying synaptic plasticity. We recently identified a collapsin response mediator protein 2 (CRMP2)-binding compound, edonerpic maleate, which augments rehabilitative training-dependent functional recovery from brain damage by facilitating experience-driven synaptic delivery of AMPARs.
View Article and Find Full Text PDFJ Med Chem
December 2024
Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
FadD32, a fatty acyl-AMP ligase, plays an indispensable role in mycobacterial mycolic acid synthesis and is a validated target for tuberculosis (TB) drug development. The crystal structure of (Mtb)FadD32 has laid the foundation of structure-based drug discovery against this crucial enzyme. Here, we screened the "isoxazole" scaffold containing molecules against MtbFadD32 and identified a compound 2,4-dibromo-6-[3-(trifluoromethyl)-1,2-oxazol-5-yl]phenol (M1) with specific inhibitory activity against Mtb.
View Article and Find Full Text PDFBeilstein J Org Chem
December 2024
Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia.
Methods for the preparation of 3-aryl-2-azirine-2,2-dicarboxylic acids and their amides, esters, and azides by FeCl-catalyzed isomerization of 3-aryl-5-chloroisoxazole-4-carbonyl chlorides into 3-aryl-2-azirine-2,2-dicarbonyl dichlorides followed by their reaction with nucleophiles are reported. Two approaches to the preparation of 3-aryl-5-chloroisoxazole-4-carbonyl chlorides have been developed.
View Article and Find Full Text PDFHeliyon
November 2024
Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, 244102, Moradabad, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!