Interaction between proteins and nucleic acids is crucial to many cellular activities. Accurately detecting nucleic acid-binding residues (NABRs) in proteins can help researchers better understand the interaction mechanism between proteins and nucleic acids. Structure-based methods can generally make more accurate predictions than sequence-based methods. However, the existing structure-based methods are sensitive to protein conformational changes, causing limited generalizability. More effective and robust approaches should be further explored. In this study, we propose iNucRes-ASSH to identify nucleic acid-binding residues with a self-attention-based structure-sequence hybrid neural network. It improves the generalizability and robustness of NABR prediction from two levels: residue representation and prediction model. Experimental results show that iNucRes-ASSH can predict the nucleic acid-binding residues even when the experimentally validated structures are unavailable and outperforms five competing methods on a recent benchmark dataset and a widely used test dataset.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.26626 | DOI Listing |
Regulation of gene expression helps determine various phenotypes in most cellular life forms. It is orchestrated at different levels and at the point of transcription initiation by transcription factors (TFs). TFs bind to DNA through domains that are evolutionarily related, by shared membership of the same superfamilies (TF-SFs), to those found in other nucleic acid binding and protein-binding functions (nTFs for non-TFs).
View Article and Find Full Text PDFVirology
January 2025
Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. Electronic address:
Human coronaviruses (HCoVs) include common cold viruses such as HCoV-229E, OC43, NL63 and HKU1 as well as MERS-CoV and SARS-CoV, which cause severe respiratory disease. Recently, SARS-CoV-2 caused a COVID-19 pandemic. The nucleocapsid (N) protein of coronaviruses, which is essential for RNA binding and homodimerization, has a highly conserved structure across viruses.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Computer Science, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, United States.
Computational prediction of nucleic acid-binding residues in protein sequences is an active field of research, with over 80 methods that were released in the past 2 decades. We identify and discuss 87 sequence-based predictors that include dozens of recently published methods that are surveyed for the first time. We overview historical progress and examine multiple practical issues that include availability and impact of predictors, key features of their predictive models, and important aspects related to their training and assessment.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong New Area, Shanghai 201210, China.
Protein-nucleic acid interactions play a crucial role in many physiological processes. Identifying the binding sites of nucleotides on the protein surface is the prerequisite for understanding the molecular recognition mechanisms between the two types of macromolecules and also provides the information to design or generate molecule modulators against these sites to manipulate biological function according to specific requirements. Existing studies mainly focus on characterizing local surfaces around sites, often neglecting the interrelationships among these sites and the global protein information.
View Article and Find Full Text PDFSci Transl Med
January 2025
College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.
Macrophages play a central role in antitumor immunity, making them an attractive target for gene therapy strategies. However, macrophages are difficult to transfect because of nucleic acid sensors that can trigger the degradation of foreign plasmid DNA. Here, we developed a macrophage-specific editing (MAGE) system by which compact plasmid DNA encoding a CasRx editor can be delivered to macrophages by a poly(β-amino ester) (PBAE) carrier to bypass the DNA sensor and enable RNA editing in vitro and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!