Liver organoid culture methods.

Cell Biosci

Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.

Published: November 2023

Organoids, three-dimensional structures cultured in vitro, can recapitulate the microenvironment, complex architecture, and cellular functions of in vivo organs or tissues. In recent decades, liver organoids have been developed rapidly, and their applications in biomedicine, such as drug screening, disease modeling, and regenerative medicine, have been widely recognized. However, the lack of repeatability and consistency, including the lack of standardized culture conditions, has been a major obstacle to the development and clinical application of liver organoids. It is time-consuming for researchers to identify an appropriate medium component scheme, and the usage of some ingredients remains controversial. In this review, we summarized and compared different methods for liver organoid cultivation that have been published in recent years, focusing on controversial medium components and discussing their advantages and drawbacks. We aimed to provide an effective reference for the development and standardization of liver organoid cultivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10619312PMC
http://dx.doi.org/10.1186/s13578-023-01136-xDOI Listing

Publication Analysis

Top Keywords

liver organoid
12
liver organoids
8
organoid cultivation
8
liver
5
organoid culture
4
culture methods
4
methods organoids
4
organoids three-dimensional
4
three-dimensional structures
4
structures cultured
4

Similar Publications

Correction for ' transplantation of intrahepatic cholangiocyte organoids with decellularized liver-derived hydrogels supports hepatic cellular proliferation and differentiation in chronic liver injury' by Impreet Kaur , , 2025, , 918-928, https://doi.org/10.1039/D4TB01503G.

View Article and Find Full Text PDF

The importance of preclinical models for cholangiocarcinoma drug discovery.

Expert Opin Drug Discov

January 2025

Center of Physiology, Pathophysiology and Biophysics, Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria.

Introduction: Biliary tract cancer (BTC) comprises a clinically diverse and genetically heterogeneous group of tumors along the intra- and extrahepatic biliary system (intrahepatic and extrahepatic cholangiocarcinoma) and gallbladder cancer with the common feature of a poor prognosis, despite increasing molecular knowledge of associated genetic aberrations and possible targeted therapies. Therefore, the search for even more precise and individualized therapies is ongoing and preclinical tumor models are central to the development of such new approaches.

Areas Covered: The models described in the current review include simple and advanced in vitro and in vivo models, including cell lines, 2D monolayer, spheroid and organoid cultures, 3D bioprinting, patient-derived xenografts, and more recently, machine-perfusion platform-based models of resected liver specimens.

View Article and Find Full Text PDF

Exploring microfluidics-based organoid interactions through analysis of albumin secretion.

Lab Chip

January 2025

State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian, 116024, China.

Organoids-on-a-chip exhibit significant potential for advancing disease modeling, drug screening, and precision medicine, largely due to their capacity to facilitate interactions among organoids. However, the influence of chip design on these interactions remains poorly understood, primarily due to our limited knowledge of the mediators of communication and the complexity of interaction dynamics. This study demonstrates that analyzing albumin secretion from liver organoids within an organoids-on-a-chip system can provide a measure of the interaction intensity among organoids, offering valuable insights into how chip design influences these interactions.

View Article and Find Full Text PDF

Dysregulation of long non-coding RNAs (lncRNAs) is common in colorectal cancer liver metastasis (CRLM). Emerging evidence links lncRNAs to multiple stages of metastasis from initial migration to colonization of distant organs. In this study we investigated the role of lncRNAs in metabolic reprogramming during CRLM using patient-derived organoid (PDO) models.

View Article and Find Full Text PDF

Protocol for generating liver metastasis microtissues to decipher cellular interactions between metastatic intestinal cancer and liver tissue.

STAR Protoc

January 2025

Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands. Electronic address:

Cell competition is a quality control mechanism that promotes elimination of suboptimal cells relative to fitter neighbors. Cancer cells exploit these mechanisms for expansion, but the underlying molecular pathways remain elusive. Here, we present a protocol for generating matrix-free microtissues recapitulating cellular interactions between intestinal cancer and hepatocyte-like cells using microscopy or transcriptomics/proteomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!