Autism spectrum disorder (ASD) is a heterogenous multifactorial neurodevelopmental condition with a significant genetic susceptibility component. Thus, identifying genetic variations associated with ASD is a complex task. Whole-exome sequencing (WES) is an effective approach for detecting extremely rare protein-coding single-nucleotide variants (SNVs) and short insertions/deletions (INDELs). However, interpreting these variants' functional and clinical consequences requires integrating multifaceted genomic information. We compared the concordance and effectiveness of three bioinformatics tools in detecting ASD candidate variants (SNVs and short INDELs) from WES data of 220 ASD family trios registered in the National Autism Database of Israel. We studied only rare (< 1% population frequency) proband-specific variants. According to the American College of Medical Genetics (ACMG) guidelines, the pathogenicity of variants was evaluated by the InterVar and TAPES tools. In addition, likely gene-disrupting (LGD) variants were detected based on an in-house bioinformatics tool, Psi-Variant, that integrates results from seven in-silico prediction tools. Overall, 372 variants in 311 genes distributed in 168 probands were detected by these tools. The overlap between the tools was 64.1, 22.9, and 23.1% for InterVar-TAPES, InterVar-Psi-Variant, and TAPES-Psi-Variant, respectively. The intersection between InterVar and Psi-Variant (I ∩ P) was the most effective approach in detecting variants in known ASD genes (PPV = 0.274; OR = 7.09, 95% CI = 3.92-12.22), while the union of InterVar and Psi Variant (I U P) achieved the highest diagnostic yield (20.5%).Our results suggest that integrating different variant interpretation approaches in detecting ASD candidate variants from WES data is superior to each approach alone. The inclusion of additional criteria could further improve the detection of ASD candidate variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620213PMC
http://dx.doi.org/10.1038/s41598-023-46258-xDOI Listing

Publication Analysis

Top Keywords

three bioinformatics
8
bioinformatics tools
8
asd candidate
8
candidate variants
8
variants snvs
8
snvs short
8
asd
5
comparison three
4
tools detection
4
detection asd
4

Similar Publications

Antiviral Assays: A Review of Laboratory Methods.

Assay Drug Dev Technol

January 2025

Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.

View Article and Find Full Text PDF

Association of Arachidonic Acid Metabolism Related Genes With Endometrial Immune Microenvironment and Oxidative Stress in Coupes With Recurrent Implantation Failure.

Am J Reprod Immunol

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China.

Background: Alterations in lipid metabolism were reported to impact human fertility; however, there is limited evidence on the association of lipid metabolism with embryo implantation as well as the etiology of recurrent implantation failure (RIF), especially regarding arachidonic acid metabolism.

Methods: Experimental verification research (16 RIF patients and 30 control patients) based on GEO database analysis (24 RIF patients and 24 control patients). The methods in bioinformatics included differential gene screening, functional enrichment analysis, protein-protein interaction network, cluster analysis, weighted gene co-expression network analysis, and so forth.

View Article and Find Full Text PDF

Cannulae are tubular protein filaments that accumulate on the extracellular surface of the hyperthermophilic archaeon during cell division. Cannulae have been postulated to act as a primitive extracellular matrix through which cells could communicate or exchange material, although their native biological function remains obscure. Here, we report cryoEM structural analyses of cannulae and of protein assemblies derived from recombinant cannula-like proteins.

View Article and Find Full Text PDF

Hypermutated proviruses, which arise in a single Human Immunodeficiency Virus (HIV) replication cycle when host antiviral APOBEC3 proteins introduce extensive guanine to adenine mutations throughout the viral genome, persist in all people living with HIV receiving antiretroviral therapy (ART). However, hypermutated sequences are routinely excluded from phylogenetic trees because their extensive mutations complicate phylogenetic inference, and as a result, we know relatively little about their within-host evolutionary origins and dynamics. Using >1400 longitudinal single-genome-amplified HIV sequences isolated from six women over a median of 18 years of follow-up-including plasma HIV RNA sequences collected over a median of 9 years between seroconversion and ART initiation, and >500 proviruses isolated over a median of 9 years on ART-we evaluated three approaches for masking hypermutation in nucleotide alignments.

View Article and Find Full Text PDF

Background: Posttraumatic elbow stiffness is a complex complication with two characteristics of capsular contracture and heterotopic ossification. Currently, genomic mechanisms and pathogenesis of posttraumatic elbow stiffness remain inadequately understood. This study aims to identify differentially expressed genes (DEGs) and elucidate molecular networks of posttraumatic elbow stiffness, providing novel insights into disease mechanisms at transcriptome level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!