The Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) field campaign provides accurate data for aerosol characterization and trace gas profiles, and establishes knowledge of the relationships between aerosols and water. The dropsonde dataset provides an in situ characterization of the vertical thermodynamic structure of the atmosphere during 165 research flights by NASA Langley's King Air research aircraft between February 2020 and June 2022 and four test flights between December 2019 and November 2021. The research flights covered the western North Atlantic region, off the coast of the Eastern United States and around Bermuda and covered all seasons. The dropsonde profiles provide observations of temperature, pressure, relative humidity, and horizontal and vertical winds between the surface and about 9 km. 801 dropsondes were released, of which 796 were processed and 788 provide complete profiles of all parameters between the flight level and the surface with normal parachute performance. Here, we describe the dataset, the processing of the measurements, general statistics, and applications of this rich dataset.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620406PMC
http://dx.doi.org/10.1038/s41597-023-02647-5DOI Listing

Publication Analysis

Top Keywords

aerosol cloud
8
cloud meteorology
8
meteorology interactions
8
interactions western
8
western atlantic
8
atlantic experiment
8
dropsonde observations
4
observations aerosol
4
experiment aerosol
4
experiment activate
4

Similar Publications

The hydration mechanism of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a relevant marker of secondary organic aerosol formation from the atmospheric oxidation of α-pinene, has been investigated using the matrix-isolation infrared spectroscopy technique. The experimental results were supported by theoretical calculations. Monomers of MBTCA and heterocomplexes MBTCA-(HO) were identified.

View Article and Find Full Text PDF

Fenton-like reactions between organic peroxides and transition-metal ions in the atmospheric aqueous phase have profound impacts on the chemistry, composition, and health effects of aerosols. However, the kinetics, mechanisms, and key influencing factors of such reactions remain poorly understood. In this study, we synthesized a series of monoterpene-derived α-acyloxyalkyl hydroperoxides (AAHPs), an important class of organic peroxides formed from Criegee intermediates during the ozonolysis of alkenes, and investigated their Fenton-like reactions with iron ions in the aqueous phase.

View Article and Find Full Text PDF

Spatiotemporal Mapping of Ultrafine Particle Fluxes in an Office HVAC System with a Diffusion Charger Sensor Array.

ACS EST Air

January 2025

Lyles School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Commercial HVAC systems intended to mitigate indoor air pollution are operated based on standards that exclude aerosols with smaller diameters, such as ultrafine particles (UFPs, D ≤ 100 nm), which dominate a large proportion of indoor and outdoor number-based particle size distributions. UFPs generated from occupant activities or infiltrating from the outdoors can be recirculated and accumulate indoors when they are not successfully filtered by an air handling unit. Monitoring UFPs in real occupied environments is vital to understanding these source and mitigation dynamics, but capturing their rapid transience across multiple locations can be challenging due to high-cost instrumentation.

View Article and Find Full Text PDF

Understanding the solubility dynamics of elements during wet deposition is crucial for assessing their environmental impacts. In this study, we investigated the solubility behaviour of various elements originating from natural and anthropogenic sources using a dataset of 106 samples describing the sequential collections of 8 rainfall events. Our results reveal distinct solubility patterns depending on the type of event, with mineral-dust events exhibiting lower solubility and anthropogenic events displaying higher solubility, in relation with dust content and pH.

View Article and Find Full Text PDF

With the continuous intensification of global warming, the reduction and ultimate phase-out of coal combustion is an inevitable trend in the future global energy transformation. This study comprehensively analyzed the impact of phasing out coal combustion on global emissions and concentrations of air pollutants, radiative fluxes, meteorology and climate using Community Earth System Model 2 (CESM2). The results indicate that after the global phase-out of coal combustion, there is a marked decrease in the concentrations of sulfur dioxide (SO), nitrogen oxides (NO) and fine particulate matter (PM), with some regions experiencing a reduction of exceeding 50%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!