Objective: Microvascular structural alterations may be considered an important form of hypertension-mediated organ damage. An increased media-to-lumen ratio of subcutaneous small arteries evaluated with locally invasive techniques (micromyography) predicts the development of cardiovascular (CV) events. However, it is not known whether retinal arteriole structural alterations evaluated with a noninvasive approach (Adaptive Optics) may have a prognostic significance.

Design And Methods: Two-hundred and thirty-seven subjects (mean age 58.7 ± 16.1 years, age range 13-89 years; 116 males) were included in the study: 65 normotensive subjects (27.4 %) and 172 patients with essential hypertension or primary aldosteronism (72.6 %). All subjects underwent a non-invasive evaluation of retinal arteriolar wall-to-lumen ratio (WLR) by Adaptive Optics. Subjects were re-evaluated after an average follow-up time of 4.55 years in order to assess the occurrence of clinical events (non CV and/or CV death or events).

Results: Fifty-four events occurred in the study population:26 were cardio-cerebrovascular events (ischemic or hemorragic stroke, atrial fibrillation, heart failure, coronary artery disease, peripheral artery disease, cardiac valvular disease) while the remaining were deaths for any cause, or neoplastic diseases. Subjects with events were older and had a WLR of retinal arterioles significantly greater than those without events. The event-free survival was significantly worse in those with a baseline WLR above the median value of the population (0.28) according to Kaplan-Mayer survival curves and multivariate analysis (Cox's proportional hazard model). The evidence was confirmed after restricting the analysis to CV events.

Conclusions: Structural alterations of retinal arterioles evaluated by Adaptive Optics may predict total and CV events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejim.2023.10.035DOI Listing

Publication Analysis

Top Keywords

adaptive optics
16
retinal arterioles
12
structural alterations
12
arterioles evaluated
8
evaluated adaptive
8
artery disease
8
events
7
retinal
5
subjects
5
prognostic significance
4

Similar Publications

Multiband (MB) optical transmission targets increasing the capacity of operators' optical transport networks. However, nonlinear impairments (NLI) affect each optical channel in the C+L+S bands differently, and, therefore, the routing and spectrum assignment (RSA) problem needs to be complemented with fast and accurate tools to consider the quality of transmission (QoT) within the provisioning process. This paper proposes a digital twin-assisted approach for lightpath provisioning to provide a complete solution for the RSA problem that ensures the required QoT in MB optical networks.

View Article and Find Full Text PDF

Autonomous technologies have revolutionized transportation, military operations, and space exploration, necessitating precise localization in environments where traditional GPS-based systems are unreliable or unavailable. While widespread for outdoor localization, GPS systems face limitations in obstructed environments such as dense urban areas, forests, and indoor spaces. Moreover, GPS reliance introduces vulnerabilities to signal disruptions, which can lead to significant operational failures.

View Article and Find Full Text PDF

As the demand for high-speed, low-latency communication continues to grow, free-space optical (FSO) communication has gained prominence as a promising solution for supporting the next generation of wireless networks, especially in the context of the 5G and beyond era. It offers high-speed, low-latency data transmission over long distances without the need for a physical infrastructure. However, the deployment of FSO systems faces significant challenges, such as atmospheric turbulence, weather-induced signal degradation, and alignment issues, all of which can impair performance.

View Article and Find Full Text PDF

Lactic acid (LA) is a versatile, optically active compound with applications across the food, cosmetics, pharmaceutical, and chemical industries, largely driven by its role in producing biodegradable polylactic acid (PLA). Due to its abundance, lignocellulosic biomass is a promising and sustainable resource for LA production, although media derived from these matrices are often rich in xylose and contain growth inhibitors. This study investigates LA production using a xylose-rich medium derived from DC stalks treated through steam explosion and enzymatic hydrolysis.

View Article and Find Full Text PDF

Modularized Reconfigurable Functional Electromagnetic Surfaces Using Tightly Coupled Antennas and Back-Loaded Radio Frequency Circuits.

Micromachines (Basel)

December 2024

Key Laboratory of Near-Range RF Sensing ICs and Microsystems (NJUST), Ministry of Education, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

This paper presents a modularized reconfigurable functional electromagnetic surface (MRFES) for broadband absorption and polarization conversion by using tightly coupled dipole antennas (TCDA) and back-loaded radio frequency (RF) circuits (BLRFC). A dual-polarized antenna array with tight coupling and wide angular scanning characteristics is designed. By loading different RF circuits on the back side of the antenna array's ground plane, switchable broadband absorption and polarization conversion functions are achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!