Rationale And Objectives: To develop a MRI-based deep learning signature for predicting axillary response after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients.
Materials And Methods: We enrolled 327 BC patients with axillary lymph node (ALN) metastases receiving axillary operations after NAC. The deep learning features were extracted by ResNet34, which was pretrained by a large, well-annotated dataset from ImageNet. Then we identified deep learning radiomics on magnetic resonance imaging with dynamic contrast enhancement (DCE-MRI) in predicting axillary response after NAC in BC patients.
Results: The extraction of 128 deep learning radiomics (DLR) features relied on the DCE-MRI for each patient. After the least absolute shrinkage and selection operator regression analysis, 13, 8, and 21 features remained from the pre-treatment, post-treatment, and combined DCE-MRI, respectively. The DLR signature established based on the combined DCE-MRI achieved good capacity in ALN response after NAC. The support vector machine achieved the best performance with an 0.99 area under the curve (AUC) of (95% confidence interval (CI), 0.98-1.00) and 0.83 (95% CI, 0.73-0.92) in the training and test sets, respectively. The LR model established with clinical parameters represented the best performance with 0.73 AUC (95% CI, 0.62-0.84), 0.73 sensitivity, 0.73 specificity, 0.63 PPV, and 0.81 NPV in the test set, respectively. Finally, the integration of radiomic signature and clinical signature resulted in establishing a predictive radiomic nomogram, with an AUC of 0.99 (95%CI, 0.99-1.00).
Conclusion: In conclusion, our current study constructed a predictive nomogram through the deep learning method, demonstrating favorable performance in the training and test cohort. The present prognostic model furnishes a precise and objective foundation for directing the surgical strategy toward ALN management in BC patients receiving NAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2023.10.004 | DOI Listing |
PLoS One
January 2025
School of Electronic Information Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, China.
Cognitive Radio (CR) technology enables wireless devices to learn about their surrounding spectrum environment through sensing capabilities, thereby facilitating efficient spectrum utilization without interfering with the normal operation of licensed users. This study aims to enhance spectrum sensing in multi-user cooperative cognitive radio systems by leveraging a hybrid model that combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. A novel multi-user cooperative spectrum sensing model is developed, utilizing CNN's local feature extraction capability and LSTM's advantage in handling sequential data to optimize sensing accuracy and efficiency.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Information Systems and Cybersecurity, University of Bisha, Bisha, KSA.
Accurate energy demand forecasting is critical for efficient energy management and planning. Recent advancements in computing power and the availability of large datasets have fueled the development of machine learning models. However, selecting the most appropriate features to enhance prediction accuracy and robustness remains a key challenge.
View Article and Find Full Text PDFPLoS One
January 2025
Centro Ricerche Enrico Fermi, Rome, Italy.
The Covid-19 pandemic has sparked renewed attention to the risks of online misinformation, emphasizing its impact on individuals' quality of life through the spread of health-related myths and misconceptions. In this study, we analyze 6 years (2016-2021) of Italian vaccine debate across diverse social media platforms (Facebook, Instagram, Twitter, YouTube), encompassing all major news sources-both questionable and reliable. We first use the symbolic transfer entropy analysis of news production time-series to dynamically determine which category of sources, questionable or reliable, causally drives the agenda on vaccines.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Biological Sciences, US Fish and Wildlife Southwest Regional Office, Albuquerque, New Mexico, United States of America.
There is growing interest in using deep learning models to automate wildlife detection in aerial imaging surveys to increase efficiency, but human-generated annotations remain necessary for model training. However, even skilled observers may diverge in interpreting aerial imagery of complex environments, which may result in downstream instability of models. In this study, we present a framework for assessing annotation reliability by calculating agreement metrics for individual observers against an aggregated set of annotations generated by clustering multiple observers' observations and selecting the mode classification.
View Article and Find Full Text PDFNetwork
January 2025
Computer Science and Engineering, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India.
Skin cancer is one of the most prevalent and harmful forms of cancer, with early detection being crucial for successful treatment outcomes. However, current skin cancer detection methods often suffer from limitations such as reliance on manual inspection by clinicians, inconsistency in diagnostic accuracy, and a lack of personalized recommendations based on patient-specific data. In our work, we presented a Personalized Recommendation System to handle Skin Cancer at an early stage based on Hybrid Model (PRSSCHM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!