Vascular endothelial cells sustain vascular health through barrier and endocrine functions. Insufficient oxygen supply induces endothelial dysfunction in the pathology of various diseases. In addition, oxygen deprivation reportedly induces endothelial dysfunction via autophagy. Ras guanyl-releasing protein 2 (RasGRP2) has guanosine 5'-diphosphate (GDP)/guanosine 5'-triphosphate (GTP) exchange factor activity and activates Rap1 and R-Ras which belong to the small GTPases. RasGRP2 exerts protective effects against vascular endothelial dysfunction. However, the effect of RasGRP2 on hypoxic stress in vascular endothelial cells has not yet been investigated. We examined the protein expression of hypoxia-inducible factor (HIF)-1α, BCL2 interacting protein 3 (BNIP3), and microtubule-associated protein light chain 3β (LC3β). We observed that oxygen deprivation increased the expression of HIF-1α, BNIP3 and LC3β II. RasGRP2 suppressed the induction of HIF-1α and the subsequent increase in LC3β II. These findings suggest the possibility that RasGRP2 plays a protective role against endothelial dysfunction by suppressing oxygen deprivation-induced autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b23-00317DOI Listing

Publication Analysis

Top Keywords

vascular endothelial
16
endothelial dysfunction
16
endothelial cells
12
oxygen deprivation-induced
8
deprivation-induced autophagy
8
induces endothelial
8
oxygen deprivation
8
endothelial
7
rasgrp2
6
oxygen
5

Similar Publications

Background: Paracoccidioidomycosis (PCM) is a systemic mycosis endemic and limited to Latin America. Brazil is responsible for more than 80% of diagnosed cases in the world. Since PCM is not a notifiable disease, there are still no accurate data on its incidence in Brazil.

View Article and Find Full Text PDF

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!