Acute liver injury (ALI), posing a serious threaten to our life, has emerged as a public health issue around the world. β-carotene has plenty of pharmacologic effects, such as anti-inflammatory, antioxidant, and antitumor activities. In this study, we focused on studying the protective role and potential molecular mechanisms of β-carotene against D-galactosamine (D-GalN) and lipopolysaccharide (LPS) induced ALI. Our results indicated that β-carotene pretreatment effectively hindered abnormal changes induced by LPS/D-GalN in liver histopathology. Meanwhile, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were downgraded with β-carotene pretreatment. β-carotene pretreatment also decreased malondialdehyde content and myeloperoxidase activity, increased glutathione peroxidase and superoxide dismutase levels, and reduced the levels of tumor necrosis factor-a (TNF-α) and interleukin 6 (IL-6) in liver tissues. Further investigations found that β-carotene mediated multiple signaling pathways in LPS/D-GalN-induced ALI, inhibiting NF-κB and MAPK signaling and upregulating the expression of Nrf2 and HO-1 proteins. All findings indicate that β-carotene appears to protect mice against LPS/D-GalN induced ALI by reducing oxidative stress and inflammation, possibly via regulating NF-κB, MAPK, and Nrf2 signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5650/jos.ess23100 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!