Removal of methylene blue by acrylic polymer adsorbents loaded with magnetic iron manganese oxides: Synthesis, characterization, and adsorption mechanisms.

Chemosphere

Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing, 100084, China. Electronic address:

Published: January 2024

Dyes pose significant risks for aquatic environments and biological health in general owing to their non-biodegradable nature, carcinogenicity, and toxicity. The effective treatment of dye wastewater has become an important research topic. In this study, acrylic polymers (AP) loaded with magnetic iron manganese oxides (MIMO) (AP/MIMO) were prepared and used for the first time for the adsorption of methylene blue (MB). Carbon in AP/MIMO exists predominantly in the C-H and C-C forms, with its content reaching 50.7%. Oxygen and nitrogen in AP/MIMO exist mainly in the -CO- and -N-C forms, with contents of up to 41.5% and 73.3%, respectively. MB removal by AP/MIMO was consistent with the pseudo-second-order kinetic model (R = 0.99), equilibrium was achieved within 20 min, and the highest MB capacity of 2611.23 mg g was predicted by the Langmuir isotherm model (R = 0.91-0.94). AP/MIMO exhibited excellent MB adsorption performance in the pH range of 4-10, with a removal efficiency higher than 99.0% (MB = 100 mL 1000 mg L; AP/MIMO = 50 mg). Thermodynamic indicators, such as positive entropy (ΔS; 98.30 J⋅mol⋅K), negative Gibbs free energy (ΔG; -29.40, -28.50, and -27.50 KJ⋅mol), and positive enthalpy (ΔH; 2.30 KJ⋅mol), demonstrated that MB removal by AP/MIMO was autonomous, favorable, and endothermic. In addition, the integration of experimental results and theoretical calculations verified that electrostatic interactions were the primary mechanism for MB adsorption at carboxyl sites on AP/MIMO. The total interaction energy between AP and MB was -310.43 kJ⋅mol, and the electrostatic effect had a decisive contribution to the MB adsorption, with a value of up to -341.06 kJ⋅mol. AP and MB were most likely bound by -COO and S atoms. Overall, AP/MIMO exhibits high adsorption capacity and shows potential as a high-performance magnetic polymer for MB removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140588DOI Listing

Publication Analysis

Top Keywords

methylene blue
8
loaded magnetic
8
magnetic iron
8
iron manganese
8
manganese oxides
8
ap/mimo
8
removal ap/mimo
8
adsorption
6
removal
5
removal methylene
4

Similar Publications

: A previous study investigated the in vitro release of methylene blue (MB), a widely used cationic dye in biomedical applications, from nanocellulose/nanoporous silicon (NC/nPSi) composites under conditions simulating body fluids. The results showed that MB release rates varied significantly with the nPSi concentration in the composite, highlighting its potential for controlled drug delivery. To further analyze the relationship between diffusion dynamics and the MB concentration, this study developed a finite element (FE) method to solve Fick's equations governing the drug delivery system.

View Article and Find Full Text PDF

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.

View Article and Find Full Text PDF

A Comparative Kinetic and Thermodynamic Adsorption Study of Methylene Blue and Its Analogue Dye on Filter Paper.

Int J Mol Sci

January 2025

Department of Mechanical Engineering, Faculty of Technical and Human Sciences, Sapientia Hungarian University of Transylvania, Calea Sighișoarei 2, 540485 Târgu-Mureş, Romania.

A comparative adsorption study was carried out for methylene blue (MB) and its 3,7-bis(N,N-(2-hydroxyethyl)amino)-phenothiazinium dye analog (MBI). Batch experiments employed aqueous solutions and commercial filter paper. Out of seven kinetic models tested by means of four quality statistical indicators, the pseudo-second-order, the double-exponential, and the bi-linear Weber-Morris equations were best fits.

View Article and Find Full Text PDF

This study reports the diagnosis and treatment of a 26-year-old pregnant woman with severe malnutrition combined with acute pyelonephritis causing sepsis, refractory septic shock and multiple organ failure. A female patient, 26 years old, was admitted to hospital mainly due to "menelipsis for more than 19 weeks, nausea and vomiting for 20 days, fever with fatigue for 3 days". At the end of 19 weeks of intrauterine pregnancy, the patient presented with fever accompanied by urinary tract irritation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!