Selective catalytic reduction of ammonia is the most widely used technology for NO removal, but there have been serious ammonia leaks and a narrow reaction temperature window. To overcome these limitations, a coal-based activated carbon (CAC) approach using KOH activation for the ammonia-free reduction of NO was investigated in this work. A preparation process was investigated by evaluating the De-NO performance at different mass ratios (KOH:coal = 0-3:1), and activation temperatures (700-900 °C). The optimum conditions were an activation temperature of 700 °C and a 1:1 ratio of KOH/coal, named CAC-1:1-700. Between 330 and 500 °C, the NO conversion efficiency is maintained at 100% within 90 min. The CAC-1:1-700 showed excellent denitrification performance and SO resistance. Based on BET, SEM, XRD, Raman, FT-IR, and XPS characterization analysis, it was found showed that KOH activation could increase the amorphous carbon, pore structure, and C(O) functional groups in CAC, which had positive effects on the denitrification performance. Furthermore, the evolution of char structures and surface species before and after the Char-NO-O reaction was evaluated by Raman and XPS, and the possible reaction mechanisms was proposed. Aliphatic structures and small aromatic rings can play the same role in De-NO, O is adsorbed on the carbon to form an oxygen-containing functional group, generating more C-O groups and creating reactive sites C*. NO then interacts with these reactive sites and is reduced to N. This research prepared CAC as a promising potential alternative to ammonia reductants due to its excellent denitration performance over a medium temperature range and complex flue gas environments, while providing the high-value utilization of coal resources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140506DOI Listing

Publication Analysis

Top Keywords

koh activation
12
coal-based activated
8
activated carbon
8
denitrification performance
8
reactive sites
8
activation
5
performance
5
investigations reduction
4
reduction coal-based
4
carbon
4

Similar Publications

Seawater electrolysis is an ideal technology for obtaining clean energy-green hydrogen. Developing efficient bifunctional catalysts is crucial for hydrogen production through direct seawater electrolysis. Currently, metal substrates loaded with active catalysts are widely employed as electrodes for seawater electrolysis.

View Article and Find Full Text PDF

Designing transition metal oxide (TMO)/porous carbon composite materials for the oxygen reduction reaction (ORR) is a promising strategy in high-performance fuel cell technology. In this study, we used the isolation effect and pore-creating properties of Zn2+ to fabricate a composite material comprising ultrasmall Fe3O4 particles anchored on hierarchically N-doped porous carbon nanospheres. This material, referred to as CPZ1.

View Article and Find Full Text PDF

Cuprous oxide-functionalized activated porous carbon-modified screen-printed carbon electrode integrated with a smartphone for portable electrochemical nitrate detection.

Talanta

January 2025

Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.

Nitrate (NO) is a widespread contaminant in drinking water. An electrochemical NO sensor was developed based on a first-time application of materials. Activated porous carbon (APC) was synthesized by carbonizing orange peel (OP) activated with KOH.

View Article and Find Full Text PDF

Polydopamine/Melamine Sponge-Derived Compressible Carbon Foam for High-Performance Supercapacitors.

Langmuir

January 2025

Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China.

Electrode materials with a deformation capability are vital to the development of flexible supercapacitors. However, the preparation of porous carbons with a deformability remains challenging. Herein, a compressible carbon foam has been successfully prepared using a polydopamine/melamine sponge (PDA/MS) as the precursor material.

View Article and Find Full Text PDF

In order to increase the added value of Xanthoceras Sorbifolia Bunge (XSB) and to obtain green biomass activated carbon with abundant pores for efficient MG removal, this study was the first to prepare XSB-based high-performance activated carbon using KOH activation. Activated at temperatures between 600 and 800 °C, XSBAC-800 exhibited the highest specific surface area (1580 m/g) and pore volume (0.732 cm/g), leading to superior MG adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!