Direct competitive assay for HER2 detection in human plasma using Bloch surface wave-based biosensors.

Anal Biochem

SAPIENZA Università di Roma, Department of Basic and Applied Sciences for Engineering, Via A. Scarpa, 16, 00161, Roma, Italy; Center for Life Nano and Neuro Science, Italian Institute of Technology (IIT), Viale Regina Elena 291, 00161, Rome, Italy.

Published: January 2024

The overexpression and/or amplification of the HER2/neu oncogene has been proposed as a prognostic marker in breast cancer. The detection of the related peptide HER2 remains a grand challenge in cancer diagnosis and for therapeutic decision-making. Here, we used a biosensing device based on Bloch Surface Waves excited on a one-dimensional photonic crystal (1DPC) as valid alternative to standard techniques. The 1DPC was optimized to operate in the visible spectrum and the biosensor optics has been designed to combine label-free and fluorescence operation modes. This feature enables a real-time monitoring of a direct competitive assay using detection mAbs conjugated with quantum dots for an accurate discrimination in fluorescence mode between HER2-positive/negative human plasma samples. Such a competitive assay was implemented using patterned alternating areas where HER2-Fc chimera and reference molecules were bio-conjugated and monitored in a multiplexed way. By combining Label-Free and fluorescence detection analysis, we were able to tune the parameters of the assay and provide an HER2 detection in human plasma in less than 20 min, allowing for a cost-effective assay and rapid turnaround time. The proposed approach offers a promising technique capable of performing combined label-free and fluorescence detection for both diagnosis and therapeutic monitoring of diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2023.115374DOI Listing

Publication Analysis

Top Keywords

competitive assay
12
human plasma
12
label-free fluorescence
12
direct competitive
8
her2 detection
8
detection human
8
bloch surface
8
diagnosis therapeutic
8
fluorescence detection
8
detection
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!