A purine nucleoside triphosphate phosphohydrolase (unspecified diphosphate phosphohydrolase, EC 3.6.1.15) was chromatographically separated from the bulk of alkaline phosphatase activity by gel filtration chromatography of butanol and EDTA extracts of fracture callus and bovine epiphyseal cartilage. The callus enzyme differed from alkaline phosphatase in a variety of characteristics. The purine nucleoside triphosphate phosphatase hydrolyzed a more specific group of substrates, required Ca2+ and Mg2+ for optimal activity, remained unaffected by a potent alkaline phosphatase inhibitor, and demonstrated a narrower range of optimal pH for catalytic activity. The enzyme was localized in the microsomal pellet following subcellular fractionation of callus chondrocytes. These characteristics indicate a role for the enzyme in Ca2+ transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2744(79)90080-9 | DOI Listing |
Oncol Rep
March 2025
School of Medicine, Zibo Vocational Institute, Zibo, Shandong 255300, P.R. China.
Triple‑negative breast cancer (TNBC), a highly malignant breast cancer subtype with a pronounced metastatic propensity, forms the focus of the present investigation. MDA‑MB‑231, a prevalently utilized TNBC cell line in cancer research, was employed. In accordance with the tumour angiogenesis theory, cancer cells are capable of instigating angiogenesis and the formation of a novel vascular system within the tumour microenvironment, which subsequently sustains malignant proliferation and metastasis.
View Article and Find Full Text PDFInt J Med Mushrooms
January 2025
Department of Food Science and Technology, Central Taiwan University of Science and Technology, Taichung City 406053, Taiwan (R.O.C.).
Cordycepin, known for its tumor-suppressive and antiviral properties, has garnered attention due to its therapeutic and biological potential. Current Cordyceps militaris - based cordycepin production methods involve time-consuming and cost-intensive solid-state fermentation. Using an internet of things (IoT) architecture, we developed an active air-feed regulation fermentation system (AAFRFS) to detect CO2 emitted during C.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
The N6-methyladenosine (m6A) modification serves as an essential epigenetic regulator in eukaryotic cells, playing a significant role in tumorigenesis and cancer progression. However, the detailed biological functions and underlying mechanisms of m6A regulation in gastric cancer (GC) are poorly understood. Our research revealed that the m6A demethylase ALKBH5 was markedly downregulated in GC tissues, which was associated with poor patient prognosis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, University of California, Berkeley, CA 94720.
Copper is an essential nutrient for sustaining vital cellular processes spanning respiration, metabolism, and proliferation. However, loss of copper homeostasis, particularly misregulation of loosely bound copper ions which are defined as the labile copper pool, occurs in major diseases such as cancer, where tumor growth and metastasis have a heightened requirement for this metal. To help decipher the role of copper in the etiology of cancer, we report a histochemical activity-based sensing approach that enables systematic, high-throughput profiling of labile copper status across many cell lines in parallel.
View Article and Find Full Text PDFCell Death Dis
January 2025
Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
Mitochondrial oxidative phosphorylation (OXPHOS) is a therapeutic vulnerability in glycolysis-deficient cancers. Here we show that inhibiting OXPHOS similarly suppresses the proliferation and tumorigenicity of glycolytically competent colorectal cancer (CRC) cells in vitro and in patient-derived CRC xenografts. While the increased glycolytic activity rapidly replenished the ATP pool, it did not restore the reduced production of aspartate upon OXPHOS inhibition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!