Genetically encoded zinc-binding collagen-like protein hybrid hydrogels for wound repair.

Int J Biol Macromol

State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China; Institutes of Biomedical Sciences, Inner Mongolia University, China. Electronic address:

Published: January 2024

AI Article Synopsis

  • Integrating zinc oxide nanoparticles into collagen can enhance antibacterial properties, but collagen's low zinc binding can interfere with effectiveness.
  • Researchers created a modified collagen-like protein, Zn-eCLP3, which binds zinc three times better than typical collagen, leading to improved performance in hydrogels.
  • Tests showed that the Zn-eCLP3 hydrogel not only exhibited superior antibacterial action but also promoted faster wound healing in animal models, suggesting its potential for wound repair applications.

Article Abstract

Incorporating zinc oxide nanoparticles (ZnOnps) into collagen is a promising strategy for fabricating biomaterials with excellent antibacterial activity, but modifications are necessary due to the low zinc binding affinity of native collagen, which can cause disturbances to the functions of both ZnOnps and collagen and result in heterogeneous effects. To address this issue, we have developed a genetically encoded zinc-binding collagen-like protein, Zn-eCLP3, which was genetically modified by Scl2 collagen-like protein. Our study found that Zn-eCLP3 has a binding affinity for zinc that is 3-fold higher than that of commercialized type I collagen, as determined by isothermal titration calorimetry (ITC). Using ZnOnps-coordinated Zn-eCLP3 protein and xanthan gum, we prepared a hydrogel that showed significantly stronger antibacterial activity compared to a collagen hydrogel prepared in the same manner. In vitro cytocompatibility tests were conducted to assess the potential of the Zn-eCLP3 hydrogel for wound repair applications. In vivo experiments, which involved an S. aureus-infected mouse trauma model, showed that the application of the Zn-eCLP3 hydrogel resulted in rapid wound regeneration and increased expression of collagen-1α and cytokeratin-14. Our study highlights the potential of Zn-eCLP3 and the hybrid hydrogel for further studies and applications in wound repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127592DOI Listing

Publication Analysis

Top Keywords

collagen-like protein
12
wound repair
12
genetically encoded
8
encoded zinc-binding
8
zinc-binding collagen-like
8
znonps collagen
8
antibacterial activity
8
binding affinity
8
potential zn-eclp3
8
zn-eclp3 hydrogel
8

Similar Publications

Methods for scoring matrix adjustment decrease the significance of biased residues to better detect homology between protein sequences. This is because non-homologous proteins often contain fragments with non-standard compositions that are strikingly similar to each other. However, these fragments are also functionally important in proteins and are receiving an increasing attention from the scientific community.

View Article and Find Full Text PDF

Dextromethorphan inhibits collagen and collagen-like cargo secretion to ameliorate lung fibrosis.

Sci Transl Med

December 2024

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.

Excessive deposition of fibrillar collagen in the interstitial extracellular matrix (ECM) of human lung tissue causes fibrosis, which can ultimately lead to organ failure. Despite our understanding of the molecular mechanisms underlying the disease, no cure for pulmonary fibrosis has yet been found. We screened a drug library and found that dextromethorphan (DXM), a cough expectorant, reduced the amount of excess fibrillar collagen deposited in the ECM in cultured primary human lung fibroblasts, a bleomycin mouse model, and a cultured human precision-cut lung slice model of lung fibrosis.

View Article and Find Full Text PDF

Assembly of Recombinant Proteins into β-Sheet Fibrillating Peptide-Driven Supramolecular Hydrogels for Enhanced Diabetic Wound Healing.

ACS Biomater Sci Eng

December 2024

Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China.

Supramolecular hydrogels offer a noncovalent binding platform that preserves the bioactivity of structural molecules while enhancing their stability, particularly in the context of diabetic wound repair. In this study, we developed protein-peptide-based supramolecular hydrogels by assembling β-sheet fibrillizing peptides (designated Q11) with β-tail fused recombinant proteins. The Q11 peptides have the ability to drive the gradated assembly of N- or C-terminal β-sheet structure (β-tail) fused recombinant proteins.

View Article and Find Full Text PDF

Vascular Ehlers-Danlos syndrome (vEDS) arises from mutations in collagen-III, a major structural component of the extracellular matrix (ECM) in vascularized tissues, including blood vessels. Fibrillar collagens form a triple-helix that is characterized by a canonical (Gly-X-Y)n sequence. The substitution of another amino acid for Gly within this conserved repeating sequence is associated with several hereditary connective tissue disorders, including vEDS.

View Article and Find Full Text PDF

The de novo design of self-assembling peptides has garnered significant attention in scientific research. While alpha-helical assemblies have been extensively studied, exploration of polyproline type II helices, such as those found in collagen, remains relatively limited. In this study, we focus on understanding the sequence-structure relationship in hierarchical assemblies of collagen-like peptides, using defense collagen Surfactant Protein A as a model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!