A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential Regulation of Wnt/β-catenin Signaling in Acute and Chronic Epilepsy in Repeated Low Dose Lithium-Pilocarpine Rat Model of Status Epilepticus. | LitMetric

Epilepsy is a chronic neurological complication characterized by unprovoked seizure episodes due to the imbalance between excitatory and inhibitory neurons. The epileptogenesis process has been reported to be involved in chronic epilepsy however, the mechanism underlying epileptogenesis remains unclear. Recent studies have shown the possible involvement of Wnt/β-catenin signaling in the neurogenesis and neuronal reorganization in epileptogenesis. In this study, we used repeated low dose lithium-pilocarpine model of status epilepsy (SE) to study the involvement of Wnt/β-catenin signaling at acute and chronic stages post SE induction. The acute study ranged from day 0 to day 28 post SE induction and the chronic study ranged from day 0 to day 56 post SE induction. Several neurobehavioral parameters and seizure score and seizure frequency was analysed until the end of the study. The proteins involved in the regulation of Wnt/β-catenin signaling and downstream cascading were analysed using western blot and quantitative real-time PCR analysis. The Wnt/β-catenin pathway was found inactive in acute SE, while the same was found activated at the chronic stage. Our findings suggest that the activated Wnt/β-catenin signaling in chronic epilepsy might be the possible mechanism underlying epileptogenesis as indicated by increased neuronal count, increased synaptic density, astrogliosis and apoptosis in chronic epilepsy. These findings can help target the Wnt/β-catenin pathway differentially depending upon the type of epilepsy. The acute stage characterized by SE can be improved by targeting GSK-3β levels and the chronic stage characterized by temporal lobe epilepsy can be improved by targeting β-catenin and disheveled proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2023.10.019DOI Listing

Publication Analysis

Top Keywords

wnt/β-catenin signaling
20
chronic epilepsy
16
post induction
12
chronic
9
regulation wnt/β-catenin
8
signaling acute
8
acute chronic
8
epilepsy
8
repeated low
8
low dose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!