Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Technological evolution leads to the constant enhancement of monitoring systems and recording symptoms of diverse disorders.
Summary: For Parkinson's disease, wearable devices empowered with machine learning analysis are the main modules for objective measurements. Software and hardware improvements have led to the development of reliable systems that can detect symptoms accurately and be implicated in the follow-up and treatment decisions.
Key Messages: Among many different devices developed so far, the most promising ones are those that can record symptoms from all extremities and the trunk, in the home environment during the activities of daily living, assess gait impairment accurately, and be suitable for a long-term follow-up of the patients. Such wearable systems pave the way for a paradigm shift in the management of patients with Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10659004 | PMC |
http://dx.doi.org/10.1159/000533798 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!