Blueberries are rich in nutrients and (poly)phenols, popular with consumers, and a major agricultural crop with year-round availability supporting their use in food-based strategies to promote human health. Accumulating evidence indicates blueberry consumption has protective effects on cardiovascular health including vascular dysfunction (i.e., endothelial dysfunction and arterial stiffening). This narrative review synthesizes evidence on blueberries and vascular function and provides insight into underlying mechanisms with a focus on oxidative stress, inflammation, and gut microbiota. Evidence from animal studies supports beneficial impacts on vascular function. Human studies indicate acute and chronic blueberry consumption can improve endothelial function in healthy and at-risk populations and may modulate arterial stiffness, but that evidence is less certain. Results from cell, animal, and human studies suggest blueberry consumption improves vascular function through improving nitric oxide bioavailability, oxidative stress, and inflammation. Limited data in animals suggest the gut microbiome mediates beneficial effects of blueberries on vascular function; however, there is a paucity of studies evaluating the gut microbiome in humans. Translational evidence indicates anthocyanin metabolites mediate effects of blueberries on endothelial function, though this does not exclude potential synergistic and/or additive effects of other blueberry components. Further research is needed to establish the clinical efficacy of blueberries to improve vascular function in diverse human populations in a manner that provides mechanistic information. Translation of clinical research to the community/public should consider feasibility, social determinants of health, culture, community needs, assets, and desires, barriers, and drivers to consumption, among other factors to establish real-world impacts of blueberry consumption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nutres.2023.09.007DOI Listing

Publication Analysis

Top Keywords

vascular function
24
blueberry consumption
16
effects blueberries
12
blueberries vascular
12
protective effects
8
function
8
narrative review
8
evidence blueberries
8
evidence indicates
8
oxidative stress
8

Similar Publications

The Interaction Between Vasculogenic Mimicry and the Immune System: Mechanistic Insights and Dual Exploration in Cancer Therapy.

Cell Prolif

January 2025

Department of Nursing, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.

Vasculogenic mimicry (VM) represents a novel form of angiogenesis discovered in numerous malignant tumours in recent years. Unlike traditional angiogenesis, VM facilitates tumour blood supply independently of endothelial cells by enabling tumour cells to form functional vascular networks. This phenomenon, where tumour cells replace endothelial cells to form tubular structures, plays a pivotal role in tumour growth and metastasis.

View Article and Find Full Text PDF

Transcriptomic Profiling Reveals 17β-Estradiol Treatment Represses Ubiquitin-Proteasomal Mediators in Skeletal Muscle of Ovariectomized Mice.

J Cachexia Sarcopenia Muscle

February 2025

Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, Minnesota, USA.

Background: With a decline of 17β-estradiol (E2) at menopause, E2 has been implicated in the accompanied loss of skeletal muscle mass and strength. We aimed at characterizing transcriptomic responses of skeletal muscle to E2 in female mice, testing the hypothesis that genes and pathways related to contraction and maintenance of mass are differentially expressed in ovariectomized mice with and without E2 treatment.

Methods: Soleus and tibialis anterior (TA) muscles from C57BL/6 ovariectomized mice treated with placebo (OVX) or E2 (OVX + E2) for 60 days, or from skeletal muscle-specific ERα knockout (skmERαKO) mice and wild-type littermates (skmERαWT), were used for genome-wide expression profiling, quantitative real-time PCR and immunoblotting.

View Article and Find Full Text PDF

Background And Aims: The performance of non-invasive liver tests (NITs) is known to vary across settings and subgroups. We systematically evaluated whether the performance of three NITs in detecting advanced fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) varies with age, sex, body mass index (BMI), type 2 diabetes mellitus (T2DM) status or liver enzymes.

Methods: Data from 586 adult LITMUS Metacohort participants with histologically characterised MASLD were included.

View Article and Find Full Text PDF

Diabetic cardiomyopathy (DbCM), a significant chronic complication of diabetes, manifests as myocardial hypertrophy, fibrosis, and other pathological alterations that substantially impact cardiac function and elevate the risk of cardiovascular diseases and patient mortality. Myocardial energy metabolism disturbances in DbCM, encompassing glucose, fatty acid, ketone body and lactate metabolism, are crucial factors that contribute to the progression of DbCM. In recent years, novel protein post-translational modifications (PTMs) such as lactylation, β-hydroxybutyrylation, and succinylation have been demonstrated to be intimately associated with the myocardial energy metabolism process, and in conjunction with acetylation, they participate in the regulation of protein activity and gene expression activity in cardiomyocytes.

View Article and Find Full Text PDF

Semaphorin-4D signaling in recruiting dental stem cells for vascular stabilization.

Stem Cell Res Ther

January 2025

Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR.

Background: Achieving a stable vasculature is crucial for tissue regeneration. Endothelial cells initiate vascular morphogenesis, followed by mural cells that stabilize new vessels. This study investigated the in vivo effects of Sema4D-Plexin-B1 signaling on stem cells from human exfoliated deciduous teeth (SHED)-supported angiogenesis, focusing on its mechanism in PDGF-BB secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!