Hydrogel exhibits attractive mechanical properties that can be regulated to be extremely tough, strong and resilient, adhesive and fatigue-resistant, thus enabling diverse applications ranging from tissue engineering scaffolds, flexible devices, to soft machines. As a liquid-filled porous material composed of polymer networks and water, the hydrogel freezes at subzero temperatures into a new material composed of polymer matrix and ice inclusions: the frozen hydrogel displays dramatically altered mechanical properties, which can significantly affect its safety and reliability in practical applications. In this study, based upon the theory of homogenization, we predicted the effective mechanical properties (e.g., Young's modulus, shear modulus, bulk modulus and Poisson ratio) of a frozen hydrogel with periodically distributed longitudinal ice inclusions. We firstly estimated its longitudinal Young's modulus, longitudinal Poisson ratio and plane strain bulk modulus using the self-consistent method, and then its longitudinal and transverse shear modulus using the generalized self-consistent method; further, the results were employed to calculate its transverse Young's modulus and transverse Poisson ratio. We validated the theoretical predictions against both finite element (FE) simulation and experimental measurement results, with good agreement achieved. We found that the estimated transverse Poisson ratio ranges from 0.3 to 0.53 and, at low volume fraction of ice inclusions, exhibits a value larger than 0.5 that exceeds the Poisson ratios of both the polymer matrix and the ice inclusion (typically 0.33-0.35). Compared with other homogenization methods (e.g., the rule of mixtures, the Halpin-Tsai equations, and the Mori-Tanaka method), the present approach is more accurate in predicting the effective mechanical properties (in particular, the transverse Poisson ratio) of frozen hydrogel. Our study provides theoretical support for the practical applications of frozen liquid-saturated porous materials such as hydrogel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2023.106190 | DOI Listing |
Am J Sports Med
January 2025
Department of Orthopedic Surgery, Columbia University Irving Medical Center, New York, New York, USA.
BMC Oral Health
January 2025
Department of Conservative Dentistry, College of Dentistry, Kyung Hee University, 26-6, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea.
Background: This study aims to compare design, phase transformation behavior, and torsional resistance of the ProGlider (PG) and ProTaper ultimate slider (PUS) and to compare the performance of two files in the glide-path preparation of a double-curved artificial canal.
Methods: Scanning electron microscopy, micro-computed tomography, and differential scanning calorimetry were used to characterize the samples. A torsional resistance test was performed to obtain ultimate strength and distortion angle.
Sci Rep
January 2025
Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China.
With the rapid development of industrialization and urbanization, the impact of noise on people's health has become an increasingly serious issue, but it is still a challenge for the reducing the noise due to its complex property. Textiles with many loose porous structures have gained much significant attentions, thus chenille yarns with plush fibers on the surface, and polyester monofilament were chosen to fabricate the integrated knitting yarns, and their fundamental and mechanical properties were fully evaluated. The results showed that the diameter and braiding angle of the blended yarns decreased with the increase of pitch, resulting in a linear correlation of R > 0.
View Article and Find Full Text PDFSci Rep
January 2025
Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
Triply periodic minimal surface (TPMS) metamaterials show promise for thermal management systems but are challenging to integrate into existing packaging with strict mechanical requirements. Composite TPMS lattices may offer more control over thermal and mechanical properties through material and geometric tuning. Here, we fabricate copper-plated, 3D-printed triply periodic minimal surface primitive lattices and evaluate their suitability for battery thermal management systems.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Prosthodontics, Yonsei University College of Dentistry, Yonsei-ro 50-1, Seodaemun-gu, Seoul, 03722, Republic of Korea.
The effects of heat-assisted vat photopolymerization (HVPP) on the physical and mechanical properties of 3D-printed dental resins, including the morphometric stability of 3D-printed crowns, were investigated. A resin tank was designed to maintain the resin at 30, 40, and 50 ℃ during the 3D printing process. Test specimens were fabricated using a commercial dental resin, with untreated resin serving as the control group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!